# Control over absolute ( $R, S$ ), relative (syn,anti) and geometrical $(E, Z)$ stereochemistry in the synthesis of allylically substituted alkenes from diphenylphosphinoyl epoxy alcohols 

Jonathan Clayden, Andrew B. McElroy and Stuart Warren*<br>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK


#### Abstract

Regioselective ring-openings of epoxy alcohols bearing a diphenylphosphinoyl ( $\mathrm{Ph}_{2} \mathrm{PO}$ ) group give diols which can undergo stereospecific Horner-Wittig elimination. This method was used to make allylic alcohols, unsaturated $\beta$-hydroxy sulfides, homoallylic alcohols and unsaturated amino acids, with control over their absolute $(R, S)$, relative (syn,anti) and geometrical ( $E, Z$ ) stereochemistry.


The diphenylphosphinoyl group came to the attention of synthetic chemists because of its ability to participate in a stereospecific elimination, the Horner-Wittig reaction. ${ }^{1}$ Conjugated double bonds can be formed directly from allylic phosphine oxides and aldehydes using lithium bases. ${ }^{2}$ However, if conditions are controlled more carefully, or if the phosphine oxide component is not allylic or benzylic, ${ }^{3}$ the reaction stops after addition of the aldehyde, and elimination does not take place. The resulting $\beta$-hydroxy phosphine oxides are stable, often crystalline, and easily purified. Subsequent stereospecific elimination using a sodium or potassium base from a single diastereoisomer of the $\beta$-phosphine oxide adduct can lead to alkenes with high geometrical purity. ${ }^{1}$

The value of the diphenylphosphinoyl group as a precursor to stereochemically pure double bonds is dependent upon its ability to control the three-dimensional relative stereochemistry of the $\beta$-hydroxy phosphine oxide intermediate. We have demonstrated that this can be achieved by a variety of methods, ${ }^{4}$ some of which ${ }^{5}$ also allow control of more remote chiral centres. Most recently, we have described the power of the diphenylphosphinoyl group to direct some enantio- ${ }^{6}$ and diastereo-selective ${ }^{7}$ epoxidations. In this paper ${ }^{8}$ we describe the stereospecific transformation of the products 1 of these epoxidations into single diastereoisomers of $\beta$-hydroxy phosphine oxides 2 containing three or four controlled chiral centres (Scheme 1). We also describe the Horner-Wittig elimination of these compounds, which sacrifices two of these chiral centres to give a double bond of controlled geometry, leaving behind the remaining chiral centres with controlled relative and absolute stereochemistry. This strategy has allowed us to synthesise single stereoisomers of a variety of allylically substituted alkenes 4 , some with potential biological applications as leukotriene analogues or unsaturated amino acids. The method is stereochemically general: it is often possible to synthesise any one diastereoisomer or enantiomer of the product at will by minor variations in the synthetic route.

## The regioselectivity of nucleophilic attack on diphenylphosphinoyl epoxides

To reveal the hydroxyl group required in the Horner-Wittig elimination, the epoxides 1 must be opened with nucleophiles. Of the two possible regioisomeric products 2 and 3 from this reaction, only 2 , with the hydroxyl group $\beta$ to phosphorus, is of use. We will start with a description and an analysis of the regioselectivity of this reaction. We will then go on to outline ways in which this regioselectivity may be modified to a point where synthetically useful reactions emerge. Finally, we will describe the use of the Payne rearrangement to direct nucleophilic attack to further electrophilic centres in 1.



Scheme 1


Our preliminary investigations into the opening of the epoxides 1 are detailed in Table 1. The regioselectivity depended heavily on the substitution pattern of the epoxide, with steric factors playing an important role. In the absence of substituents $R^{1}$ and $\mathbf{R}^{2}$, the 'natural' regioselectivity of the system appears marginally to favour attack at the unwanted, $\beta$ to phosphorus, end of the epoxide (entry 1 ). This 'natural' regioselectivity is enhanced in the case of the epoxy alcohols $\mathbf{1 b}$ (entries 2 and 3 ).

Table 1 Regioselectivity of nucleophilic attack on $\mathrm{Ph}_{2} \mathrm{PO}$ epoxides

| Entry | Starting material 1 | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | Nucleophile | $\beta$-Opened product, yield (\%) | $\gamma$-Opened product, yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1a | H | H | Me | PhSLi | 5,46 | 6, 21 |
| 2 | anti,syn-1b | $\mathrm{C}_{5} \mathrm{H}_{11}$ | H | CHOHMe | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SLi}$ | 7, 60 | 0 |
| 3 | anti,syn-1b | $\mathrm{C}_{5} \mathrm{H}_{11}$ | H | CHOHMe | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SNa}$ | 7,66 | 0 |
| 4 | 1c | H | Me | $\mathrm{CH}_{2} \mathrm{OH}$ | PhSNa | 0 | 8, 100 |
| 5 | anti-1d | $\mathrm{C}_{5} \mathrm{H}_{11}$ | Me | Et | PhSLi | 9, 25 | 10, 37 |
| 6 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | PhSNa | 0 | 11, 18 |
| 7 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{NH}_{4} \mathrm{~N}_{3}$ | 120, 9 | 13, 13 |
| 8 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | thymineNa | 0 | $0^{a}$ |

${ }^{a} 66 \%$ Yield of the $E$-vinyl phosphine oxide 14.
Table 2 Lewis acid-catalysed nucleophilic opening of $\mathrm{Ph}_{2} \mathrm{PO}$ epoxides

| Entry | Starting material | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | Nucleophile | Lewis acid | $\beta$-Opened product, yield (\%) | $\gamma$-Opened product, yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | anti-1d | $\mathrm{C}_{5} \mathrm{H}_{11}$ | Me | Et | PhSH | $\mathrm{Me}_{3} \mathrm{Al}$ | 9, $<10^{a}$ | 10, 59 |
| 2 | syn,syn-1f | $\mathrm{C}_{5} \mathrm{H}_{11}$ | Me | CHOHMe | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 15, 11 | 16, 16 |
| 3 | anti,syn-1b | $\mathrm{C}_{5} \mathrm{H}_{11}$ | H | CHOHMe | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 7,9 | 17, $31{ }^{\text {b }}$ |
| 4 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | 18, 69 |
| 5 | syn-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | 19, 46 |
| 6 | syn-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | Bu'SH | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | 20, 6; 21, 51 |
| 7 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | $0^{\text {c }}$ |
| 8 | syn-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | 21, 62 |
| 9 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ | $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}$ | 0 | $0^{\text {d }}$ |
| 10 | syn-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ | $\mathrm{Ti}\left(\mathrm{O}^{\mathbf{i}} \mathrm{Pr}\right)_{4}$ | 0 | 22, 61 |
| 11 | anti-1g | Et | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ | $\mathrm{Ti}\left(\mathrm{O}^{\text {i Pr }}\right.$ ) 4 | 23, 27 | 24, 19 |
| 12 | syn-1g | Et | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ | $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ | 25, 21 | 26, 39 |
| 13 | anti-1e | $\mathrm{Pr}^{\text {i }}$ | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{2}$ AlNHBn | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | $27^{e}$ |
| 14 | syn-1e | Pri | H | $\mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{Me}_{2} \mathrm{AlNHBn}$ | $\mathrm{Me}_{3} \mathrm{Al}$ | 0 | 28, $19{ }^{\text {f }}$ |

${ }^{a}$ By NMR. ${ }^{b}$ The $\delta$-opening product 29 was also isolated in $10 \%$ yield. This probably results from a Lewis acid-catalysed Payne rearrangement (P. C.
 material recovered. ${ }^{\text {e At room temperature, a low yield of a mixture of starting material and the desired product was obtained. At reflux in }}$ dichloromethane, a $55 \%$ yield of the $Z$-vinyl phosphine oxide 30 was obtained. ${ }^{f}$ Starting material recovered in $25 \%$ yield.

No addition was observed $\gamma$ to phosphorus in these compounds, probably because of the inductive effect of the neighbouring hydroxyl group. ${ }^{9}$ The $\gamma: \beta$ regioselectivity is greatly increased if the $\beta$ position bears a substituent. The epoxy alcohol 1 c reacted with complete regioselectivity for the desired $\gamma$ position (entry 4). Surprisingly, the reaction of 1 d was less regioselective, despite the absence of a $\delta$ hydroxyl group in this compound (entry 5). With $\mathrm{R}^{1}=\operatorname{Pr}^{\mathrm{i}}, \beta$ opening is disfavoured, and the reactions proceed more slowly and are low yielding (entries 6 and 7). The X-ray crystal structure of anti-1 ${ }^{6} \dagger$ suggests that the diphenylphosphinoyl group may shield the rear side of the epoxide in this compound in a conformation stabilised by the bulky group attached to the carbon $\alpha$ to phosphorus. The sodium salt of thymine acted as a base rather than as a nucleophile, catalysing rearrangement of the epoxide anti-1e to the $E$-vinyl phosphine oxide 14 . The sensitivity of the regioselectivity observed in epoxide openings to both steric and electronic effects has been demonstrated by Sharpless. ${ }^{9}$
Attack of sulfur and nitrogen nucleophiles on our epoxides was more successful under Lewis acid catalysis (Table 2). The reaction of anti-1d with benzenethiol in the presence of trimethylaluminium (entry 1) proceeded in similar yield to, but with greater desired $\gamma$ selectivity than, its uncatalysed reaction with PhSLi (Table 1, entry 5). Thiol attack on the epoxides syn,syn-1f and anti,syn-1b was also slightly $\gamma$ selective in the

[^0]presence of trimethylaluminium, and we were able to isolate the desired $\beta$-hydroxy phosphine oxides 16 and 17 from these reactions in low yield (entries 2 and 3). As with the reactions in Table 1, this $\gamma$ selectivity was increased when the group $\alpha$ to phosphorus was more bulky: for the epoxides anti- and syn-1e (which have $\mathrm{R}^{1}=\operatorname{Pr}^{\mathrm{i}}$ ), none of the $\beta$-opened product was observed, and the $\beta$-hydroxy phosphine oxides 18 and 19 were isolated in good yield (entries 4 and 5).

Interestingly, addition of the more bulky 1,1-dimethylethanethiol to syn-1e proceeded only in low yield ( $6 \%$; entry 6 ): the major product from this reaction was transfer of a methyl group from the trimethylaluminium to give the diol 21. This diol could also be made in good yield simply by refluxing the epoxide syn-1e with trimethylaluminium in dichloromethane (entry 7). The anti diastereoisomer of this epoxide, anti-1e, failed to react with trimethylaluminium (entry 8 ).
Nitrogen nucleophiles, under Lewis acid catalysis, behaved similarly. Trimethylsilyl azide-titanium tetraisopropoxide ${ }^{10}$ reacted with $\operatorname{syn}$-le to give solely the $\gamma$ opened epoxide 22 (entry 9), though, like trimethylaluminium, it would not react with anti-1e. Moving to the less crowded epoxides 1 g (with $\mathrm{R}^{1}=\mathrm{Et}$ ) exchanged lack of reactivity in the anti diastereoisomer for lack of regioselectivity: both syn- and anti-1g gave mixtures of $\beta$ and $\gamma$ products $23+24$ and $25+26$ (entries 10 and 11).

The aluminium amine complex $\mathrm{Me}_{2}$ AlNHBn, ${ }^{11}$ which has much greater nucleophilicity towards epoxides than benzylamine itself, was remarkably unreactive towards both synand anti-1e (entries 12 and 13). In both cases, some amino diol product 27 or 28 was formed, but the reaction did not reach completion. An attempt to force the reaction by refluxing antile with $\mathrm{Me}_{2}$ AINHBn in dichloromethane overnight resulted in









14
18

19
23




30
rearrangement to the $Z$-vinyl phosphine oxide 30 in $55 \%$ yield.

The effect of the Lewis acids (trimethylaluminium or titanium tetraisopropoxide) on the regioselectivity of these epoxide openings is surprising. Both these reagents have been used widely in the past precisely because they promote regioselective nucleophilic attack at $\mathrm{C}-3 \ddagger$ (the $\beta$ carbon of our epoxy alcohols). ${ }^{10,12}$ The usual explanation ${ }^{10}$ for this mode of action is the chelating effect of the epoxy and hydroxy oxygen atoms. The complete $\mathrm{C}-2(\gamma)$ selectivity achieved in the reactions of syn-1e in the presence of these reagents (Table 2, entries 4, 5,
$\ddagger$ In Sharpless's numbering system for epoxy alcohols, ${ }^{9} \mathrm{C}-1$ refers to the carbon atom bearing the hydroxyl group (the carbon $\delta$ to phosphorus in our diphenylphosphinoyl epoxy alcohols), and C-2 and C-3 to the carbon atoms carrying the epoxide (respectively $\gamma$ and $\beta$ to phosphorus in our compounds).


anti,syn-1b
syn,anti-1b
anti,syn-1f
syn,syn-1f
$34\left(\mathrm{R}^{2}=\mathrm{H}\right) 94 \%^{a}$
$35\left(\mathrm{R}^{2}=\mathrm{H}\right) 74 \%{ }^{a}$
$36\left(\mathrm{R}^{2}=\mathrm{Me}\right) 36 \%^{b}$
$37\left(\mathrm{R}^{2}=\mathrm{Me}\right) 84 \%^{a}$

Scheme 2
6, 8 and 10 ) is probably partly due to competing alternative chelation by the epoxy and the phosphoryl oxygen atoms. The relative unreactivity of anti-1e, which gives no addition product with trimethylaluminium or trimethylsilyl azide-titanium tetraisopropoxide, could be due to a steric interaction which blocks formation or reaction of this complex for the anti diastereoisomer.
The additional importance of a steric contribution to the $\gamma$ regioselectivity observed in the reactions of $\mathbf{1}$ is demonstrated by the contrastingly unselective reactions of the less crowded epoxides $\mathbf{1 b}\left(R^{1}=\right.$ pentyl) and $\mathbf{1 g}\left(R^{1}=E t\right)$ (Table 2, entries 3, 11 and 12). Both diastereoisomers reacted to give mixtures of regioisomers.
The reaction sequence was completed by treating the three enantiomerically enriched diols 19,21 and 18 with sodium hydride in DMF (Scheme 2). ${ }^{1}$ They each underwent stereospecific Horner-Wittig elimination, to give the $E$ homoallylic alcohols 31 and 32 in good yield from the syn $\beta$ hydroxy phosphine oxides 19 and 21, and the $Z$ homoallylic alcohol 33 in poor yield from the anti $\beta$-hydroxy phosphine oxide 18. The geometries of the double bonds were determined by ${ }^{1} \mathrm{H}$ NMR coupling constants of the two olefinic protons ( 15.5 Hz for the two $E$ alkenes 31 and $32 ; 10.4 \mathrm{~Hz}$ for the $Z$ alkene 33), and since the Horner-Wittig elimination is stereospecific, this allowed us to confirm the sense of the diastereoselectivity in our epoxidation reactions. ${ }^{6,7}$ The values of ${ }^{3} J_{\text {PCHCHOH }}$ for all the $\beta$-hydroxy phosphine oxides formed by $\gamma$-opening of the epoxides 1 were also characteristic of their stereochemistry. ${ }^{13}$ The sign of the optical rotation of the homoallylic alcohol 32 was in agreement with that of the literature value ${ }^{14}$ for this enantiomer.

## $\gamma$-Regioselectivity controlled by oxidation

A hydroxyl substituent lowers the rate of nucleophilic substitution at an adjacent electrophilic centre. In the absence of other steric or electronic effects, nucleophilic attack on epoxy alcohols is therefore $\mathrm{C}-3$ selective. ${ }^{9}$ A carbonyl substituent, on the other hand, increases the rate of nucleophilic substitution at


Scheme 3
an adjacent electrophilic centre. ${ }^{15}$ Oxidation of epoxy alcohols to epoxy carbonyl compounds can therefore provide a means of reversing the regioselectivity of their opening reactions. ${ }^{9}$
We applied this strategy to our epoxides, and in this way were able to open them with complete $\gamma$ regioselectivity. The epoxy alcohols $\mathbf{1 b}$ and $\mathbf{1 f}$ were oxidised (most efficiently with Jones' reagent) to the four epoxy ketones 34-37. Attack of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ on these ketones gave only the $\gamma$-opening product: 34 and 35 gave the sulfides 38 and 40 in high yield (Scheme 3). The stereospecifity of these reactions was, however, incomplete, and in each case, about $20 \%$ epimerisation was observed.
Reaction of the ketone 36 with $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ occurred more slowly, and the ring-opened product was unstable under the number of conditions tried. Fragmentation of the first-formed alkoxide $\mathbf{4 2}$ gave two ketones $\mathbf{4 3}$ and 44 which were isolated in 56 and $44 \%$ yield, respectively (Scheme 4).
The two epimeric mixtures of ketones 38 and 40 were stereoselectively reduced with sodium borohydride back to the diols 39 and 41, both of which were isolated as single diastereoisomers in high yield. The stereochemistry of the reduction was established by comparing the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds with those of the diols produced by direct epoxide opening of anti,syn-1b with the thiolate. Attack of the reducing agent appears to be directed solely by the sulfide substituent $\alpha$ to the ketone, which will prefer to occupy the perpendicular position in the Felkin-Anh ${ }^{16}$ conformation 45. This conformation is additionally stabilised by hydrogen bonding between the hydroxyl group and the ketone, and made more reactive by interaction between the $\mathrm{C}=\mathrm{O} \pi^{*}$ and the $\mathrm{C}-\mathrm{S}$ $\sigma^{*} .{ }^{17}$ The importance of the hydrogen bond is demonstrated by comparison of the stereoselectivity of this reduction with the lower stereoselectivity in the reduction of $\beta$-keto sulfides lacking the hydroxyl group. ${ }^{18}$
Treatment of the racemic diols $17,39,41$ and 16 with sodium hydride in DMF gave the unsaturated $\beta$-hydroxy sulfides 46, 47, 49 and 50 respectively (Scheme 5), with control over the geometry of the double bond and the relative stereochemistry of the two remaining chiral centres. These compounds are precursors of leukotriene analogues. ${ }^{19}$ The elimination leading to the disubstituted $E$ alkene 49 was higher yielding than the eliminations leading to trisubstituted or to $Z$ alkenes, which were also accompanied by side-reactions. For example, the allylic sulfide 48, probably formed by decomposition of the desired product 47, was isolated in substantial yield from the elimination of 39. The major product from the elimination of 15 was hexyldiphenylphosphine oxide 51.

## Unsaturated amino acids (Scheme 6)

The principle of carbonyl-directed epoxide opening was also applied to the enantiomerically enriched epoxy alcohols synand anti-1e and syn- and anti-1h. These were oxidised $\left(\mathrm{RuCl}_{3}\right.$, $\left.\mathrm{NaIO}_{4}, \mathrm{MeCN}\right)^{20}$ to the epoxy acids $52,55,58$ and 61 in excellent yield. Treatment of these acids with refluxing aqueous



Scheme 4
benzylamine ${ }^{21}$ gave the insoluble amino acids $\mathbf{5 3}, 56,59$ and $\mathbf{6 2}$, which could be esterified with diazomethane to give the more easily handled amino esters $64-67$ in quantitative yield. No regioisomers or epimers were observed after esterification.

Horner-Wittig elimination of these amino acids was best accomplished from the sodium dianions (sodium hydride in DMF) of 53 and 59 and from the potassium dianions (potassium hydroxide in DMSO) of the anti compounds 56 and 62 (Scheme 7). The unsaturated amino acid products were isolated by diazomethane esterification of the complete reaction mixture, giving single geometrical isomers of the enantiomerically enriched $N$-benzylated unsaturated $\alpha$-amino acid methyl esters 54, 57, 60 and 63 in moderate yield. Unsaturated amino acids have antimicrobial activity, ${ }^{22}$ and are useful for tools for the investigation of biochemical mechanisms. ${ }^{23}$
This elimination is rather remarkable since it forms a $\beta, \gamma-$ unsaturated acid without isomerisation under very basic conditions. Moreover, chiral shift studies of 54 and 55 with 1( 9 -anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ showed that the enantiomeric excess of the final unsaturated amino ester products remained more or less intact ( 63 and $67 \%$ ee from the epoxides syn- and anti-1e of 65 and $85 \%$ ee, respectively): little racemisation had taken place.§ Racemisation, double bond migration, and lack of geometrical selectivity are problems in many of the published asymmetric syntheses of $\beta, \gamma$-unsaturated amino acids. ${ }^{25}$
An attempt to eliminate sodium diphenylphosphinate from the ester 64 with sodium hydride in DMF gave a result reminiscent of the fragmentation which resulted from attack of nucleophiles on 37 . Only the aldehyde 68 was isolated from the reaction, in $22 \%$ yield. The use of dianions discourages this fragmentation.

Reduction of the esterified phosphine oxides 64 and $\mathbf{6 5}$ back
§ The purification of the amino acids by crystallisation could also have altered the enantiomeric excesses.



$4833 \%$


41


16

$4766 \%$

$4976 \%$

$5016 \%$



Scheme 5


Scheme 6 Reagents: A, $\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3}$ (cat.), $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{4}$; B, $\mathrm{BnNH}_{2}, \mathrm{H}_{2} \mathrm{O}$, reflux; C, (1) NaH , DMF; (2) $\mathrm{CH}_{2} \mathrm{~N}_{2}$; D , (1) KOH , DMSO; (2) $\mathrm{CH}_{2} \mathrm{~N}_{2}$
to primary alcohols 28 and 27, representing overall $\gamma$ selective addition of benzylamine to the epoxy alcohols $1 e$ was achieved using lithium borohydride-methanol in THF. ${ }^{26}$ This reduction was accompanied by a small amount of epimerisation, but the major diastereoisomers were, in each case, identical with the products formed in low yield by addition of $\mathrm{Me}_{2} \mathrm{AlNHBn}$ to the appropriate epoxy alcohol (Table 2, entries 13 and 14).

## $\delta$-Regioselective openings by controlled Payne rearrangement

In some ingenious work on the regioselective ring openings of the epoxy alcohols, Sharpless ${ }^{27}$ has demonstrated that it is possible to direct nucleophilic attack to $\mathrm{C}-1$ (the carbon atom bearing the hydroxyl group) by using a controlled Payne rearrangement. ${ }^{28}$ He developed two complementary methods, the 'diol sulfide' and 'diol sulfonate' routes. We applied both of these routes to our diphenylphosphinoyl epoxy alcohols, and found the 'diol sulfonate' route, which avoids basic conditions, more suited to our base-sensitive compounds. Using this route,
we were able to demonstrate the synthesis of some enantiomerically enriched allylic alcohols, though not with the same success as for the C -2-directed openings just described.

In the manner of the 'diol sulfide' route, the epoxy alcohol 69 was dissolved in $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide in an attempt to form a Payne equilibrating mixture of epoxide regioisomers 69 and 70 (Scheme 8). A solution of 1,1dimethylethanethiol was added slowly to this mixture, to trap the more reactive terminal epoxide. However, when the product mixture from this reaction was examined by NMR, it was found to contain none of the hoped-for terminal sulfide 71. Instead, a mixture of three elimination products 72,73 and 74 was formed.

Turning to the 'diol sulfonate' route, we treated the three epoxides 69,77 and 81 with methanesulfonyl chloride and triethylamine to give the mesylates $\mathbf{7 5}, 78$ and 82 in excellent yield. These epoxy mesylates were surprisingly resistant to acidcatalysed ring opening in aqueous DMSO. Reaction of the cis epoxide 78 needed 2 equivalents of acid, and took 45 h to




Scheme 7


Scheme 8
reach completion, while the trans epoxide 75 needed 7 days under these conditions. Nonetheless, high yields of the diols 76 and 79 were obtained. Reaction in refluxing THF was faster (complete in 2-4 h), but gave low yields. The unsubstituted epoxy mesylate 82 was even more inert. Its reaction with water was only complete after refluxing in aqueous THF with 2 equiv. of perchloric acid for 42 h . Attempted ring opening in DMSO returned only starting material.

Ring closure to the terminal epoxide was easily achieved by stirring the diols with potassium carbonate in methanol for a few minutes. High yields of the three epoxides 70,80 and 84 were obtained (Scheme 9). The enantiomeric excesses of the three terminal epoxides were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of 1-(9-anthryl)-2,2,2-trifluoro-


Scheme 10
ethanol. ${ }^{24}$ The methyl-substituted compounds showed no loss of enantiomeric purity during the reaction sequence: starting materials 69 and 77 with enantiomeric excesses of 97 and $77 \%$, respectively, gave the products $\mathbf{7 0}$ and $\mathbf{8 0}$ with enantiomeric excesses of $>95$ and $73 \%$. The unsubstituted product 84, however, had enantiomeric excess of only $35 \%$, despite originating from epoxide 81 with an enantiomeric excess of $82 \%$.
Regioselectivity in the acid-catalysed ring-opening of $\mathbf{8 2}$ is the same as enantiospecificity. Attack at C-3 gives one enantiomer of the diol 83, while attack at C-2 gives the other. The C- 3 selectivity usually observed in these reactions arises from the electron-withdrawing effect of the sulfonate group, which deactivates $\mathrm{C}-2$ toward attack. ${ }^{27}$ Our epoxide 82 also has an inductive electron-withdrawing diphenylphosphinoyl group deactivating C-3 (hence its low reactivity under acidic conditions). Moreover, the diphenylphosphinoyl group can





78
$\xrightarrow{\mathrm{C}}$
$77 \%$





Scheme 9 Reagents: A, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$; $\mathrm{B}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$, reflux; C, $\mathrm{HCIO}_{4}, \mathrm{H}_{2} \mathrm{O}$, DMSO, r.t.; D, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$

Table 3 C-1 Regioselective ring-opening reactions

| Entry | Starting material | Reagents* | Product | $\mathrm{Nu}=$ | Yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 82 | A | 85 | PhS | 82 |
| 2 | 78 | A | 86 | PhS | 96 |
| 3 | ( $\pm$ )-78 | B | 87 | $p-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{~S}$ | 81 |
| 4 | ( $\pm$ )-78 | C | 88 | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}$ | 75 |
| 5 | ( $\pm$ )-78 | D | 89 | $\mathrm{N}_{3}$ | 97 |
| 6 | ( $\pm$ )-78 | 1. D; 2. E; 3. F | 90 | NHTs | 49 |
| 7 | ( $\pm$ )-78 | 1. D; 2. E; 3. G | 91 | NHAc | 74 |
| 8 | ( $\pm$ )-78 | H | 92 | $\mathrm{NH}_{2}$ | 100 |
| 9 | ( $\pm$-78 | 1. H; 2. G | 91 | NHAc | 81 |
| 10 | ( $\pm$ )-78 | I | 93 | 5-bromouracil-1-yl | 76 |
| 11 | ( $\pm$ )-78 | J | 94,95 | 6 -chloropurin-9-yl | 47 |
|  |  |  |  | 6-chloropurin-1-yl | 12 |
| 12 | ( $\pm$ )-78 |  | 96 | CN | 92 |
| 13 | ( $\pm$ )-78 | 1. K; 2. L | 97 | $\mathrm{CH}_{2} \mathrm{NHAc}$ | 37 |
| 14 | $( \pm)-78$ | 1. K; 2. M | 98 - ${ }^{\text {a }}$ | - | 67 |
| 15 | ( $\pm$ )-78 | N or O | 72, $73{ }^{\text {a }}$ | - | $b$ |

* Reagents: A, $\mathrm{PhSNa}, \mathrm{EtOH} ; \mathrm{B}, p-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{SLi}, p-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{SH}, \mathrm{THF} ; \mathrm{C}, \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SLi}, \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{THF} ; \mathrm{D}, \mathrm{NaN}_{3}, \mathrm{NH} 4 \mathrm{Cl} ; \mathrm{E}, \mathrm{H}, \mathrm{Pd} / \mathrm{C} ; \mathrm{F}, \mathrm{TsCl}$,
 $\mathrm{Ac}_{2} \mathrm{O} ; \mathrm{M}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O} ; \mathrm{N}, \mathrm{KCN}, \mathrm{DMF} ; \mathrm{O}, \mathrm{NaCN}$, THF. ${ }^{a}$ Plus several other unidentified products. ${ }^{b}$ Not determined.
hinder attack at C-3 sterically. These two effects combined are known to be more than able to overcome any C-3 selectivity in some reactions. ${ }^{9}$ The drop in enantiomeric excess of epoxide 84 from 82 to $35 \%$ represents a regioselectivity of 2.5:1. We have assumed that C-3 attack still predominates, though this is not certain. The C-3 selectivity in attack on $\mathbf{7 5}$ and $\mathbf{7 8}$ is saved by the methyl group, which can stabilise an incipient positive charge on the C-3 carbon, promoting attack at this centre under acid conditions. ${ }^{29}$
The terminal epoxides 70,80 and 84 were opened with a variety of nucleophiles (Table 3) in order to perform HornerWittig eliminations on the $\beta$-hydroxy phosphine oxide products. More readily available racemic material was used for most of these reactions.

Thiolate nucleophiles reacted very cleanly with the epoxides 80 and 84 (entries 1-4). Ammonium azide and ammonia also opened the epoxide 80 in excellent yield to give azide $\mathbf{8 9}$ and amine 92 (entries 5 and 8 ). These compounds were conveniently protected as a sulfonamide 90 or an acetamide 91 (entries 6,7 and 9 ). The sodium anions of 5 -bromouracil and 6 chloropurine ${ }^{30,31}$ opened the epoxide 80 successfully (though in moderate yield) to give a pyrimidine 93 and a purine 94 (entries 10 and 11). A significant amount of a regioisomer ${ }^{31} 95$ was also formed in the reaction with 80.

A nitrile functional group was introduced successfully by using ytterbium(III) cyanide with a trimethylsilyl cyanide buffer (entry 12), ${ }^{32}$ and the nitrile 96 was converted into the acetamide 97 by hydrogenation ( $\mathrm{H}_{2}, \mathrm{PtO}_{2}, \mathrm{Ac}_{2} \mathrm{O}$ ) (entry 13). Attempted hydrogenation of the nitrile over $5 \% \mathrm{Pd}-\mathrm{C}$ in acetic anhydride gave, bizarrely, a good yield of the ketone 98 (entry 14). Unbuffered reactions of $\mathbf{8 0}$ with cyanide gave a complex mixture of products (entry 15 ), including the vinyl phosphine oxides 72 and 73, formed by base-catalysed Payne rearrangement and elimination.

Attempts to make allylic alcohols from the diols that had been produced by the epoxide openings were only partially successful. Several of these diols were treated with an excess of sodium or potassium base under standard conditions for promoting the Horner-Wittig elimination, ${ }^{1}$ but only two, the phenyl sulfides 85 and 86, gave any of the desired elimination products ( 99 and 100), and only in low yield (Scheme 10). The by-products from this reaction, benzenethiol and its oxidation product diphenyl disulfide, suggested that a fragmentation 101 (similar to that observed in the attempted elimination of the ester 64) was taking place. Attempted elimination of the
acetamide 91 gave another fragmentation via 102, and methyldiphenylphosphine oxide was isolated in $59 \%$ yield. This reaction was noted above in the attempted elimination of another tertiary alcohol 16 . None of the number of other conditions which were tried with this compound gave the desired Horner-Wittig elimination product.

## Experimental

Flash chromatography refers to chromatography on silica by the method of Still, Kahn and Mitra. ${ }^{33}$ Values of coupling constants ( $J$ ) are given in Hz and $[\alpha]_{\mathrm{D}}$ values in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2}$ $\mathrm{g}^{-1}$. Unless an enantiomeric excess and specific rotation are quoted for the product, starting epoxides are racemic; enantiomeric excesses were determined using 1 -( 9 -anthryl)-2,2,2-trifluoroethanol. ${ }^{6,24}$ In certain cases, the Attached Proton Test (APT) was applied to ${ }^{13} \mathrm{C}$ NMR spectra. Positive peaks in the APT are indicated by ${ }^{+}$, negative ones by ${ }^{-}$.

## Attack of PhSLi on epoxide 1a

Butyllithium ( $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $0.5 \mathrm{~cm}^{3}, 0.78$ mmol ) was added dropwise to a stirred solution of the epoxide ${ }^{6}$ $1 \mathrm{a}(120 \mathrm{mg}, 0.45 \mathrm{mmol})$ and benzenethiol $\left(0.5 \mathrm{~cm}^{3}, 4.9 \mathrm{mmol}\right)$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ under nitrogen. After being stirred for 1 h the mixture was diluted with diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and washed with $3 \%$ aqueous sodium hydroxide ( $2 \times 5 \mathrm{~cm}^{3}$ ) and water ( $2 \times 5 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil, which was purified by chromatography on a short fat column of silica, eluting with EtOAc. The two components of the mixture were separated by HPLC, eluting with EtOAc-15\% hexane to give (2RS,3SR)-1-diphenylphosphinoyl-3-phenylsulfanylbutan-2-ol 6 ( $36 \mathrm{mg}, 21 \%$ ) as an oil, $R_{\mathrm{F}}$ (EtOAc) 0.42 (Found: $\mathrm{M}^{+}-\mathrm{SPh}-\mathrm{MeCHOH}$, 255.0938. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OP}$ requires 255.0925); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3400(\mathrm{OH}), 1437(\mathrm{PPh})$ and $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.9-7.3 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), $7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{CHOH}), 4.2-3.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.27(1 \mathrm{H}, \mathrm{dq}, J 6.5$ and 6 , SCH ), $2.82\left(1 \mathrm{H}\right.$, ddd, $J 16,9$ and $3, \mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ), $2.46(1 \mathrm{H}$, ddd, $J$ $16,12.5$ and 9.5, $\left.\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.28(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCH}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-127\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhS$), 70\left(J_{\mathrm{PC}} 3.5, \mathrm{CHOH}\right)$, $50\left(J_{\mathrm{PC}} 12, \mathrm{CHS}\right), 34\left(J_{\mathrm{PC}} 71, \mathrm{PCH}_{2}\right)$ and $16.4(\mathrm{Me}) ; m / z 255$ ( $100 \%, \mathrm{M}-\mathrm{SPh}-\mathrm{H}_{2} \mathrm{O}$ ) and 201 ( $99, \mathrm{Ph}_{2} \mathrm{PO}$ ).

Also obtained was (2RS,3RS)-4-diphenylphosphinoyl-3-phenylsulfanylbutan-2-ol 5 ( $78 \mathrm{mg}, 46 \%$ ) as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc})$ 0.34 (Found: $\mathrm{M}^{+}-\mathrm{H}, \quad 381.1060 . \quad \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{P}$ requires
381.1076); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1440(\mathrm{PPh})$ and 1178 ( $\mathrm{P}=\mathrm{O}$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.3$ ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), 7.2 ( 5 $\mathrm{H}, \mathrm{m}, \mathrm{PhS}), 4.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 3.94(1 \mathrm{H}, \mathrm{q}, J 6, \mathrm{CHOH})$, $3.04(1 \mathrm{H}, \mathrm{dq}, J 12$ and $6, \mathrm{SCH}), 2.9-2.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right)$ and $1.31(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-127$ ( $\mathrm{Ph}_{2} \mathrm{PO}$ and PhS ), $70\left(J_{\mathrm{PC}} 2.3, \mathrm{CHOH}\right), 52\left(\mathrm{~J}_{\mathrm{PC}} 3.7, \mathrm{CHS}\right), 34$ $\left(J_{\mathrm{PC}} 65, \mathrm{PCH}_{2}\right)$ and $21.5(\mathrm{Me}) ; m / z 381(0.3 \%, \mathrm{M}-\mathrm{H})$ and 202 ( $100, \mathrm{Ph}_{2} \mathrm{POH}$ ).

## Attack of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SLi}$ on the epoxide 1b

Butyllithium ( $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $0.3 \mathrm{~cm}^{3}, 0.46$ mmol ) was added dropwise to a stirred solution of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ ( $0.1 \mathrm{~cm}^{3}, 0.66 \mathrm{mmol}$ ) in THF ( $2 \mathrm{~cm}^{3}$, at $0^{\circ} \mathrm{C}$ under nitrogen and stirring was continued for 5 min . The epoxide ${ }^{6} \mathbf{1 b}(93 \mathrm{mg}, 0.25$ mmol ) was added in one portion to the above solution and the resulting mixture was allowed to warm to room temperature over 15 min . It was then applied directly to two PLC plates ( $\mathrm{SiO}_{2}$-EtOAc: $50 \%$ hexane) to give (2RS,3SR,4SR,5SR)-5-diphenylphosphinoyl-4-(3-phenylpropylsulfanyl)decane-2,3-diol $7(78 \mathrm{mg}, 60 \%)$ as a white crystalline solid, $\mathrm{mp} 133-133.5^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: $\mathbf{M}^{+}-\mathrm{MeCHOH}, 479.2188$. $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{PS}$ requires 479.2173); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3200(\mathrm{OH})$, $1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.0-8.0$ ( 15 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}+\mathrm{Ph}\right), 6.45(1 \mathrm{H}, \mathrm{d}, J 4, \mathrm{SCHCHOH}), 4.08(1 \mathrm{H}$, q, $J 6, \mathrm{MeCHOH}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 9$ and 4, SCHCHOH), 3.10 ( $1 \mathrm{H}, \mathrm{dd}, J 13$ and $9, \mathrm{SCH}$ ), $2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$ ), 2.55 and 2.38 ( 4 $\left.\mathrm{H}, 2 \times \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.2-1.0\left[11 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}+\right.$ $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2}+\mathrm{OH}\right], 1.28(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCH})$ and $0.78(3 \mathrm{H}, \mathrm{t}, J$ 7, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ). Addition of $\mathrm{D}_{2} \mathrm{O}$ caused the signal at $\delta 6.45$ to disappear and the signal at $\delta 8.34$ to simplify to ( $1 \mathrm{H}, \mathrm{d}, J 9$ ); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}\right)$, 22.1 (t, MeCH ${ }_{2}$ ), 24.7 ( $\mathrm{t}, \mathrm{MeCH}_{2} \mathrm{CH}_{2}$ ), 29.7 ( $\mathrm{dt}, \mathrm{J}_{\mathrm{PC}} 9$, $\left.\mathrm{PCHCH}_{2} \mathrm{CH}_{2}\right), 30.9$ and $31.7\left(2 \mathrm{C}, 2 \times \mathrm{t}, \mathrm{PCHCH}_{2}+\right.$ $\mathrm{SCH}_{2} \mathrm{CH}_{2}$ ), 33.2 (t, $\mathrm{PhCH}_{2}$ ), 34.8 ( $\mathrm{t}, \mathrm{SCH}_{2}$ ), 45.1 (dd, $J_{\mathrm{PC}} 61.5$, $\mathrm{PCH}), 47.2(\mathrm{~d}, \mathrm{SCH}), 67.6$ and $74.4(2 \mathrm{C}, 2 \times \mathrm{d}, 2 \times \mathrm{CHOH})$ and 128.0-133.0 ( $18 \mathrm{C}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}+\mathrm{Ph}$ ); m/z 479 ( $38 \%$, M - MeCHOH), 450 (7), 299 (270) and 202 (100, $\mathrm{Ph}_{2} \mathrm{POH}$ ).

## Attack of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathbf{S N a}$ on the epoxide anti,syn-1b

Sodium hydride ( $50 \%$ dispersion in mineral oil; $13 \mathrm{mg}, 0.16$ mmol ) was added in one portion to a stirred solution of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\left(0.1 \mathrm{~cm}^{3}, 0.65 \mathrm{mmol}\right)$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ at room temperature under nitrogen. After the evolution of gas had ceased, the epoxide ${ }^{6}$ anti,syn $-1 \mathbf{b}(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ was added to the solution and stirring was continued for 1 h . The reaction mixture was applied directly to two PLC plates ( $\mathrm{SiO}_{2}, \mathrm{EtOAc}-$ $50 \%$ hexane) to give the diol $7(93 \mathrm{mg}, 66 \%)$.

## Attack of PhSNa on the epoxide 1c

Benzenethiol ( $0.1 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}, 6$ equiv.) and sodium benzenethiolate ( $23.0 \mathrm{mg}, 0.174 \mathrm{mmol}, 1.06$ equiv.) were added to a stirred solution of the epoxy alcohol ${ }^{6} \mathbf{~ 1 c ~ ( ~} 35.9 \mathrm{mg}, 0.119$ mmol ) in dry ethanol ( $1 \mathrm{~cm}^{3}$ ). After 74 h , the solvent was removed under reduced pressure from the mixture and the residue was dissolved in ethyl acetate. The solution was washed with dilute aqueous sodium hydroxide ( $\times 2$ ) and water ( $\times 2$ ), dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and evaporated under reduced pressure to give ( $2 R, 3 S$ )-4-diphenylphosphinoyl-3-methyl-2-phenylsulfanyl-butane-1,3-diol $8(62.7 \mathrm{mg}, 100 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+37.0$ ( $c 1.41$ in $\mathrm{CHCl}_{3} ; 97 \%$ ee); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.46 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3600-3100 (OH), $1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) $7.8-7.1$ ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhS ), $4.09(1 \mathrm{H}, \mathrm{dd}, J 12.1$ and $\left.9.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.72(1 \mathrm{H}$, dd, $J 12.1$ and 3.7 , $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$ ), 3.51 ( 1 H , dd, $J 9.0$ and 3.7 , CHS), 3.03 ( $2 \mathrm{H}, \mathrm{ABP} \mathrm{m}, \mathrm{PCH}_{2}$ ) and $1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 137-126 ( $\mathrm{Ph}_{2} \mathrm{PO}$ and PhS ), 77.3- $(\mathrm{MeCOH})$, $63.3^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 58.1^{+}\left({ }^{3} J_{\mathrm{PC}} 8.0, \mathrm{CHS}\right), 39.2^{-}\left({ }^{1} J_{\mathrm{PC}} 68.7, \mathrm{PCH}_{2}\right)$ and $25.1^{+}\left({ }^{3} J_{\mathrm{PC}} 7.0, \mathrm{Me}\right) ; m / z 285\left(32 \%, \mathrm{M}-\mathrm{SPh}-\mathrm{H}_{2} \mathrm{O}\right), 259$
[56, $\mathrm{Ph}_{2} \mathrm{POCH}{ }_{\mathrm{C}} \mathrm{C}(\mathrm{OH}) \mathrm{Me}$ ], 218 (37, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}$ ), 216 (31, $\left.\mathrm{Ph}_{2} \mathrm{POMe}\right), 215\left(\mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 202$ (21, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( 100 , $\mathrm{Ph}_{2} \mathrm{PO}$ ).

## Attack of PhSLi on the epoxide anti-1d

Butyllithium ( $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $0.35 \mathrm{~cm}^{3}, 0.5$ mmol ) was added dropwise to a stirred solution of benzenethiol ( $220 \mathrm{mg}, 2.0 \mathrm{mmol}$ ) in THF $\left(1.5 \mathrm{~cm}^{3}\right.$ ) at $20^{\circ} \mathrm{C}$ under nitrogen. This solution was, in turn, added dropwise to a stirred solution of the epoxide ${ }^{6}$ anti-1d ( $120 \mathrm{mg}, 0.34 \mathrm{mmol}$ ) in THF ( 1.5 mmol ) and heated at $45^{\circ} \mathrm{C}$ for 24 h . After cooling, the mixture was diluted with diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ washed with $3 \%$ aqueous sodium hydroxide ( $2 \times 5 \mathrm{~cm}^{3}$ ) and water ( $2 \times 5 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. This was purified by chromatography on a short fat column of silica, eluting with EtOAc. The two components of the mixture were separated by HPLC, eluting with $\mathrm{Et}_{2} \mathrm{O}-50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give(3RS,4RS,5RS)-5-diphenylphosphinoyl-4-methyl-4-(phenyl-sulfanyl)decan-3-ol 9 ( $40 \mathrm{mg}, 25 \%$ ) as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc})$ 0.57 (Found: $\mathbf{M}^{+}-\mathbf{H}, 479.2150 . \quad \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{PS}$ requires 479.2174); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.2\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhS ), $6.3(1 \mathrm{H}, \mathrm{br}$ s, OH ), 3.7 ( $1 \mathrm{H}, \mathrm{dd}, J 8$ and 2, CHOH), 2.65 ( 1 H, ddd, $J 8,7$ and $3, \mathrm{SCH}), 2.3-0.5(16 \mathrm{H}, \mathrm{m}), 1.1(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeCS})$ and $0.65\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{MeCH} \mathrm{CH}_{2}\right) ; m / z 479(0.04 \%$, M - H), 371 (8, M - SPh), 353 (10, M - SPh - OH) and 202 (100, $\mathrm{Ph}_{2} \mathrm{PO}$ ).
Also obtained was (3RS,4SR,5SR)-5-diphenylphosphinoyl-4-methyl-3-(phenylsulfanyl)decan-4-ol $10(60 \mathrm{mg}, 37 \%)$ as a solid, $R_{\mathbf{F}}$ (EtOAc)0.49(Found: C, $72.4 ; \mathbf{H}, 7.97 \% ; \mathbf{M}^{+}-\mathrm{Me}, 465.2003$. $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{PS}$ requires $\mathrm{C}, 72.5 ; \mathrm{H}, 7.71 \% ; M^{+}-\mathrm{Me}, 465.2107$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.1-7.1$ ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhS ), 3.7 ( 1 H , br s, OH ), $3.30(1 \mathrm{H}, \mathrm{dd}, J 9$ and 2, CHS), $3.0(1 \mathrm{H}, \mathrm{m}$, $\mathbf{P C H}_{2}$ ), 2.5-0.5 ( $10 \mathrm{H}, \mathrm{m}$ ), 1.21 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$ ) and 0.8-0.4 ( 6 $\mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2} \times 2$ ); $m / z 465$ ( $13 \%$, M - Me), 353 (32, M -$\mathrm{SPh}-\mathrm{OH}), \quad 329\left(90, \quad \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{SPh}\right), \quad 286$ ( $10, \quad \mathrm{M}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OSPh}\right)$ and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## Attack of PhSNa on the epoxy alcohol anti-1e

Benzenethiol ( $0.1 \mathrm{~cm}^{3}, 0.98 \mathrm{mmol}, 6.4$ equiv.) and sodium benzenethiolate ( $24 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) were added to a solution of the epoxy alcohol ${ }^{6}$ anti-1e $(49.9 \mathrm{mg}, 0.151 \mathrm{mmol})$ in dry ethanol $\left(1 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 94 h , when TLC showed almost complete consumption of starting material. After being heated under reflux for a further 28 h , the mixture was diluted with chloroform, washed with dilute aqueous sodium hydroxide, water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash chromatography, eluting with EtOAc-hexane (3:2) and then EtOAc-hexane ( $4: 1$ ), gave oily material ( $11.7 \mathrm{mg}, 18 \%$ ), tentatively identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy as ( $2 S, 3 S, 4 R$ )-4-diphenylphos-phinoyl-5-methyl-2-(phenylsulfanyl)hexane-1,3-diol 11; $R_{\mathrm{F}}(\mathrm{Et}$ OAc) $0.50 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.0-7.1\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhS ), 4.24 ( $1 \mathrm{H}, \mathrm{t}, J 10.3, \mathrm{CHOH}$ ), 3.77 ( $2 \mathrm{H}, \mathrm{ABX} \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$ ), 3.54 ( 1 H , dt, $J 10.8$ and 5.7, CHS), 3.09 ( $1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{PCH}$ ), $2.42\left(1 \mathrm{H}, \mathrm{d} \times\right.$ octet, $J 14.0$ and $7.0, \mathrm{C} H \mathrm{Me}_{2}$ ), $1.20(3 \mathrm{H}, \mathrm{d}, J$ $6.8, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $0.88\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$.

## Attack of $\mathrm{NH}_{4} \mathbf{N}_{3}$ on the epoxy alcohol anti-1e

A solution of sodium azide ( $100 \mathrm{mg}, 1.5 \mathrm{mmol}, 5.4$ equiv.) and ammonium chloride ( $36 \mathrm{mg}, 0.67 \mathrm{mmol}, 2.3$ equiv.) in water ( $0.25 \mathrm{~cm}^{3}$ ) was added at room temperature to a solution of the epoxy alcohol ${ }^{6}$ anti- $1 \mathrm{e}(94.9 \mathrm{mg}, 0.287 \mathrm{mmol})$ in 2-methoxyethanol $\left(2 \mathrm{~cm}^{3}\right)$. The mixture was heated under reflux $\left(135^{\circ} \mathrm{C}\right)$ for 4 days and then cooled and concentrated under reduced pressure. The residue was purified by flash chromatography, eluting with EtOAc-hexane ( $4: 1$ ), then EtOAc, and then EtOAc-10\% MeOH , to give crystalline material ( $14.2 \mathrm{mg}, 13 \%$ ), tentatively
identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy as ( $2 S, 3 S, 4 R$ )-2-azido-4-diphenylphosphinoyl-5-methylhexane-1,3-diol 13, $R_{\mathrm{F}}(\mathrm{EtOAc})$ $0.45 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.29(1 \mathrm{H}$, $\mathrm{t}, J 10.4, \mathrm{CHOH}), 4.17\left(1 \mathrm{H}\right.$, dd, $J 12.0$ and $3.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$ ), $3.98\left(1 \mathrm{H}\right.$, dd, $J 12.1$ and $\left.3.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.54(1 \mathrm{H}, \mathrm{dt}, J 10.8$ and 3.0, $\left.\mathrm{CHN}_{3}\right), 2.81(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{PCH}), 2.34(1 \mathrm{H}, \mathrm{d} \times$ octet, $J 14.0$ and $\left.7.0, \mathrm{CHMe}_{2}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$.

Also obtained was an oil ( $9.4 \mathrm{mg}, 9 \%$ ), tentatively identified by its ${ }^{1} \mathrm{H}$ NMR spectrum as $(2 S, 3 R, 4 R)$-3-azido-4-diphenylphosphinoyl-5-methylhexane-1,3-diol 12; $R_{\mathrm{F}}(\mathrm{EtOAc})$ $0.35 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.91(1 \mathrm{H}$, dd, $J 13.8$ and $6.1, \mathrm{CHN}_{3}$ ), $3.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right.$ and $\mathrm{CHOH}), 3.59\left(1 \mathrm{H}\right.$, dd, $J 12.3$ and 4.8, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.05(1 \mathrm{H}$, $\left.\mathrm{d}, J 15.0, \mathrm{PCH}), 2.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})_{2}\right), 1.10(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $0.86\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$ ).

## Attack of the Na salt of thymine on epoxy alcohol anti-1e

Sodium hydride ( $80 \%$ suspension; $13.1 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.6$ equiv.) was added to a stirred solution of thymine ( $108 \mathrm{mg}, 0.86$ mmol, 3.2 equiv.) in dry DMSO ( $1 \mathrm{~cm}^{3}$ ) under nitrogen. After 40 min , the mixture had cleared, and a solution of the epoxy alcohol ${ }^{6}$ anti-1e ( $90.1 \mathrm{mg}, 0.27 \mathrm{mmol}$ ) in dry DMSO $\left(1.5 \mathrm{~cm}^{3}\right)$ was added to it. After the solution had been stirred at $90^{\circ} \mathrm{C}$ for 47 h it was diluted with brine ( $30 \mathrm{~cm}^{3}$ ) and extracted with ethyl acetate $\left(10 \mathrm{~cm}^{3} \times 5\right)$. The combined extracts were washed with water ( $10 \mathrm{~cm}^{3} \times 2$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield (S,E)-4-diphenylphosphinoyl-5-methylhex-3-ene-1,2-diol 14 (71.7 $\mathrm{mg}, 66 \%$ ) as an oil (Found: $\mathrm{M}^{+}, 330.1373 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}$ requires $M, 330.1385) ; R_{\mathrm{F}}\left(\mathrm{CHCl}_{3}-10 \% \mathrm{MeOH}-2 \% \mathrm{NH}_{3}\right) 0.28$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3200(\mathrm{OH}), 1430(\mathrm{PPh})$ and 1160 ( $\mathrm{P}=\mathrm{O}$ ) ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.93(1$ $\mathrm{H}, \mathrm{dd}, J 23.5$ and $8.5, \mathrm{C}=\mathrm{CH}), 4.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 4.15(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.64(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 2.5 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.47\left(1 \mathrm{H}\right.$, dd, $J 11.0$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 2.84(1$ $\mathrm{H}, \mathrm{d} \times$ septet, $J 14.0$ and $7.0, \mathrm{C} H \mathrm{Me}_{2}$ ), 1.15 ( $3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and 1.11 ( $3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $144.3^{+}\left({ }^{2} J_{\mathrm{PC}} 10.2, \mathrm{PC}=\mathrm{C}\right), 141.8^{+}\left({ }^{1} J_{\mathrm{PC}} 90.3\right.$, PC), 133-128 ( $\mathrm{Ph}_{2} \mathrm{PO}$ ), $69.6^{+}\left({ }^{3} J_{\mathrm{PC}} 17.4, \mathrm{CHOH}\right), 66.0^{-}\left({ }^{4} J_{\mathrm{PC}}\right.$ $1.4, \mathrm{CHOH}), 29.9^{+}\left({ }^{2} J_{\mathrm{PC}} 10.2, \mathrm{CHMe}_{2}\right), 23.0^{+}\left({ }^{3} J_{\mathrm{PC}} 3.6\right.$, $\left.\mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $22.3^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 3.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 330(3.5 \%$, $\mathbf{M}^{+}$), 312 ( $45, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ ), 299 ( $39, \mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}$ ), 283 (42), 225 (34), 202 (77, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).
$\mathrm{Me}_{3} \mathrm{Al}$-Catalysed addition of PhSH to the epoxide anti-1d
A solution of benzenethiol ( $0.64 \mathrm{~cm}^{3}, 6.25 \mathrm{mmol}$ ) in dichloromethane ( $3 \mathrm{~cm}^{3}$ ) was added dropwise to trimethylaluminium ( $2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF; $2.5 \mathrm{~cm}^{3}, 6.25 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$ under nitrogen and the mixture stirred for 10 min . A solution of the epoxide ${ }^{6}$ anti-1d ( $278 \mathrm{mg}, 0.75 \mathrm{mmol}$ ) in dichloromethane ( $3 \mathrm{~cm}^{3}$ ) was added to the mixture which was then warmed to room temperature for 16 h . After dilution with water $\left(25 \mathrm{~cm}^{3}\right)$ the mixture was extracted with dichloromethane ( $3 \times 15 \mathrm{~cm}^{3}$ ). The combined extracts were washed with aqueous sodium hydroxide ( $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 10 \mathrm{~cm}^{3}$ ) and water ( $2 \times 10 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give an oil consisting (by NMR) only of regioisomer 10 ( $>6: 1$ 10:9). Flash chromatography of the oil gave the alcohol 10 ( $210 \mathrm{mg}, 59 \%$ ).

## $\mathrm{Me}_{3} \mathrm{Al}$-Catalysed addition of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ to the epoxide syn,syn-1f

$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\left(0.4 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}\right)$ was added dropwise to a stirred solution of trimethylaluminium $\left(2.5 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in THF; $1.05 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$ under nitrogen and the resulting mixture was allowed to warm to room temperature over 10 min . After this a solution of the epoxy alcohol ${ }^{6} \mathbf{1 f}$ $(0.768 \mathrm{~g}, 2 \mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ was added
dropwise to the mixture and stirring was continued for 48 h . A second portion of a mixture of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\left(0.4 \mathrm{~cm}^{3}\right)$ and trimethylaluminium ( $1.05 \mathrm{~cm}^{3}$ ) was added to the reaction mixture and stirring continued for a further 48 h at room temperature. The resulting solution was then poured into sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this crude product by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}-\right.$ $40 \%$ hexane followed by EtOAc) gave recovered epoxy alcohol 1f ( $173 \mathrm{mg}, 23 \%$ ).

Also obtained was ( $2 R S, 3 S R, 4 S R, 5 R S$ )-5-diphenylphos-phinoyl-4-methyl-4-(3-phenylpropylsulfanyl)decane-2,3-diol $15(122 \mathrm{mg}, 11 \%)$ as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-40 \%$ hexane) 0.28 (Found: $\mathrm{M}^{+}-\mathrm{MeCHOH}, 493.2328 . \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{PS}$ requires $M-\mathrm{MeCHOH}, 493.2330) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$, $1440(\mathrm{P}-\mathrm{Ph})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.70(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{CH}_{3} \mathrm{CH}_{2}$ ) 0.8-3.0 ( $16 \mathrm{H}, \mathrm{m}$ ), $1.19\left(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{3} \mathrm{CH}\right)$, $1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}), 3.66[1 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}(\mathrm{OH}) \mathrm{CS}], 4.30(1 \mathrm{H}, \mathrm{q}$, $J 6, \mathrm{MeCHOH}), 6.0(1 \mathrm{H}, \mathrm{d}, J 6, \mathrm{SCCHOH})$ and $7.1-8.1(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ). Addition of $\mathrm{D}_{2} \mathrm{O}$ caused the signal at $\delta 6.0$ to disappear and the signal at $\delta 3.66$ to simplify to a singlet; $\mathrm{m} / \mathrm{z}$ 493 ( $35 \%$, M -MeCHOH ), 464 [28, $\mathrm{M}-\mathrm{MeCH}(\mathrm{OH}) \mathrm{CHO}$ ], 430 (12), 202 ( $100, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $78, \mathrm{Ph}_{2} \mathrm{PO}$ ).

Also obtained was ( $2 R S, 3 R S, 4 S R, 5 R S$ )-5-diphenylphos-phinoyl-4-methyl-3-(3-phenylpropylsulfanyl)decane-2,4-diol 16 ( $168 \mathrm{mg}, 16 \%$ ) as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-40 \%$ hexane) 0.21 (Found: $\mathbf{M}^{+}-\mathrm{MeCHOH}-\mathrm{OH}, 476.2290 . \quad \mathrm{C}_{30} \mathrm{H}_{37} \mathrm{OPS}$ requires $M-\mathrm{MeCHOH}-\mathrm{OH}, 476.2303) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3400(\mathrm{OH}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1163(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.72\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) 0.85-2.4(13 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 2.57\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{PhCH}_{2}\right), 3.10(1$ $\mathrm{H}, \mathrm{d}, J 8, \mathrm{SCH}), 4.20(1 \mathrm{H}$, distorted quintet, $J 7, \mathrm{CHOH}), 4.7$ and $6.4(2 \mathrm{H}, 2 \times$ broad s, $2 \times \mathrm{OH})$ and 7.1-8.1 $(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ ). Irradiation of the signal at $\delta 4.20$ caused the signal at $\delta$ 1.30 to simplify to a singlet and addition of $\mathrm{D}_{2} \mathrm{O}$ caused the disappearance of the signals at $\delta 4.7$ and $6.4 ; m / z 476(5 \%), 419$ (4), 401 (9), 369 [43, $\left.\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}-\mathrm{H}_{2} \mathrm{O}\right], 329$ (100), 286 (15), 229 (41, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ ), 202 ( $80, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( 94 , $\mathrm{Ph}_{2} \mathrm{PO}$ ).

## $\mathrm{Me}_{3} \mathrm{Al}$-Catalysed addition of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$ to the epoxide anti,syn-1b

Trimethylaluminium ( $2.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF; $1.2 \mathrm{~cm}^{3}, 3$ mmol ) was added dropwise to a stirred solution of the epoxy alcohol ${ }^{6}$ anti,syn-1b $(0.5 \mathrm{~g}, 1.34 \mathrm{mmol})$ and $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}(0.5 \mathrm{~g}$, 3.2 mmol ) in dichloromethane at room temperature under nitrogen and the resulting solution was heated at reflux for 10 h . After cooling, the reaction mixture was poured into $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{NaOH}\left(100 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(150 \mathrm{~cm}^{3}\right)$. The ether layer was washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{NaOH}\left(50 \mathrm{~cm}^{3}\right)$ and water $\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this crude product by flash chromatography ( $\mathrm{SiO}_{2}$, EtOAc-65\% hexane) gave 5-diphenylphosphinoyl-2-(3-phenylpropylsulfanyl)decane-3,4-diol $29(73 \mathrm{mg}, 10 \%)$ as a white crystalline solid, $\mathrm{mp} 133-135^{\circ} \mathrm{C}$; $R_{\mathrm{F}}$ (EtOAc-hexane) 0.29 (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 506.2410$. $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{PS}$ requires $M^{+}-\mathrm{H}_{2} \mathrm{O}, 506.2408$ ); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 3350(\mathrm{OH}), 1590$ and $1600(\mathrm{Ph}), 1442(\mathrm{P}-\mathrm{Ph})$ and $1660(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.77\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $1.0-1.7\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.31(3 \mathrm{H}, \mathrm{d}, J 6), 1.84(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ ), 2.51 and $2.67\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and PCH ), $2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.74(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 25 \mathrm{and} 2, \mathrm{PCHCHOH}), 7.0-$ $7.3\left(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right)$ and $7.3-8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$. Irradiation of the signal at $\delta 1.31$ or 3.74 simplified the signal at $\delta 2.73 ; \mathrm{m} / \mathrm{z}$ $506\left(11 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 355\left[38, \mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}\right], 345$ [72, $\left.\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHMe}\right], 316\left[11, \mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCH}-\right.$ (Me)CHO], 315 [19, $\left.\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCH}(\mathrm{Me}) \mathrm{CHOH}\right], 229$
[22, $\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CHCH}_{2}\right], 219\left(14, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}\right), 202$ ( 100 , $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$.

Also obtained was the diol $7(65 \mathrm{mg}, 9 \%)$ as a white crystalline solid, $R_{\mathrm{F}}(\mathrm{EtOAc}-66 \%$ hexane) 0.21 , and (2RS, 3SR,4SR,5SR)-5-diphenylphosphinoyl-3-(3-phenylpropylsulfanyl) decane-2,4-diol 17 ( $219 \mathrm{mg}, 31 \%$ ) as an oil, $R_{\mathrm{F}}$ (EtOAc-66\% hexane) 0.17 (Found: $\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}$, 488.2303. $\mathrm{C}_{31} \mathrm{H}_{37}$ OPS requires $\left.M^{+}-2 \mathrm{H}_{2} \mathrm{O}, 488.2303\right)$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400$ $(\mathrm{OH}), 1600$ and $1590(\mathrm{C}=\mathrm{C}), 1442(\mathrm{P}-\mathrm{Ph})$ and $1163 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 0.69\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.8-$ $1.9\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CH}_{3} \mathrm{CH}\right), 1.86(2 \mathrm{H}$, quintet, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.38\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{AB}} 12, J_{\mathrm{Ax}} 7.5\right.$, $\left.\mathrm{PhCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.48\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{AB}} 12, J_{\mathrm{B}} 7.5, \mathrm{PhCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.63(1 \mathrm{H}$, $\mathrm{t}, J 8.5, \mathrm{SCH}), 2.68\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{SCH}_{2}\right), 3.07(1 \mathrm{H}, \mathrm{dt}, J 3$ and $\mathrm{Hz}, \mathrm{PCH}), 3.95-4.2(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHOH}), 7.0-7.3(5 \mathrm{H}, \mathrm{m}$, $P h \mathrm{CH}_{2}$ ) and 7.3-8.0 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ); $m / z 488(0.065 \% \mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ ), 355 [12, $\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}$ ], 315 [50, $\left.\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHCH}(\mathrm{OH}) \mathrm{Me}\right], 286(12), 229\left[38, \mathrm{Ph}{ }_{2} \mathrm{P}(\mathrm{OH})-\right.$ $\left.\mathrm{CHCH}_{2}\right], 202\left(72, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2S,3R,4R)-4-Diphenylphosphinoyl-5-methyl-2-(3-phenylpropyl

 sulfanyl)hexane-1,3-diol 18Trimethylaluminium ( $2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene; $0.84 \mathrm{~cm}^{3}$, 3.1 equiv.) and $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\left(0.1 \mathrm{~cm}^{3}, 0.43 \mathrm{mmol}, 1.23\right.$ equiv.) were added to a solution of the epoxide ${ }^{6}$ anti-1e ( $180.2 \mathrm{mg}, 0.546$ mmol ) in dry dichloromethane ( $5.5 \mathrm{~cm}^{3}$ ). The mixture was heated under reflux for 1 h , cooled, carefully quenched with dilute aqueous sodium hydroxide and diluted with dichloromethane. The layers were separated, and the aqueous layer was extracted with dichloromethane ( $\times 2$ ). The combined organic layer and extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash chromatography, eluting with EtOAc-hexane (4:1), gave the sulfide $359(181.2 \mathrm{mg}, 69 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}-7.2(c 0.72$ in $\mathrm{CHCl}_{3} ; 85 \%$ ee) (Found: $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 464.1917 . \mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PS}$ requires $\left.M-\mathrm{H}_{2} \mathrm{O}, 464.1938\right)$; $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.37 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3600-3200(\mathrm{OH}), 1430(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 8.0-7.1 ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph ), $4.11(1 \mathrm{H}, \mathrm{t}, J$ $10.6, \mathrm{CHOH}$ ), $3.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.51(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 4.8, $\mathrm{CHSCH}_{2}$ ), 3.1-2.9 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$ and $\mathrm{CH} \mathrm{Me}_{2}$ ), $2.67(1 \mathrm{H}, \mathrm{t}$, $\left.J 7.0, \mathrm{CH}_{2} \mathrm{~S}\right), 2.47\left(1 \mathrm{H}, \mathrm{dt}, J 12\right.$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 2.32(1 \mathrm{H}$, $\mathrm{dt}, J 12$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 1.86(2 \mathrm{H}$, quintet, $J 7.0$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.20\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.92(3 \mathrm{H}$, $\left.\mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 75.4^{+}(\mathrm{CHOH}), 65.7^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 48.4^{+}\left({ }^{3} \mathrm{JPC}^{\mathrm{PC}} 12.6\right.$, $\left.\mathrm{CHSCH}_{2}\right), 43.7^{+}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 67.2, \mathrm{PCH}\right), 34.8^{-}, 31.3^{-}, 29.6^{-}$ $\left[\left(\mathrm{CH}_{2}\right)_{3}\right], 26.0^{+}\left(\mathrm{CHMe}_{2}\right), 24.7^{+}\left(\mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $22.1^{+}$ ( ${ }^{3} \mathrm{~J}_{\mathrm{PC}} 8.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$ ); $m / z 464\left(2 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 451(4, \mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{OH}$ ), 313 [89, $\left.\quad \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right], 287$ [78, $\left.\mathrm{Ph}_{2} \mathrm{POCH}\left(\mathrm{CHMe}_{2}\right) \mathrm{CHOH}\right], 243$ (49, $\mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{6}$ ), 202 (55, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).
(2S,3R,4S)-4-Diphenylphosphinoyl-5-methyl-2-(3-phenylpropyl-sulfanyl)hexane-1,3-diol 19
In the same way, the epoxy alcohol ${ }^{6}$ gave the sulfide 19 (77.4 $\mathrm{mg}, 46 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}+38.6$ (c 0.20 in $\mathrm{CHCl}_{3} ; 65 \%$ ee). (Found: M - $\mathrm{H}_{2} \mathrm{O}, 464.1913 . \mathrm{C}_{28} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PS}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$, 464.1938); $R_{\mathrm{F}}(\mathrm{EtOAc}) \quad 0.43 ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 3600-3200$ $(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.0$ $7.1\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 6.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{CHOH}), 4.07$ ( 1 H, ddd, $J 23.7,11.2$ and $7.0, \mathrm{CHOH}), 3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right)$, $3.53\left(1 \mathrm{H}, \mathrm{dd}, J 8.8\right.$ and $\left.4.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.16(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 1.4, CHP), $2.30\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.8,6.6\right.$ and $\left.4.0, \mathrm{CHSCH}_{2}\right), 2.21$ ( 1 $\mathrm{H}, \mathrm{dt}, J 11.8$ and $7.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}$ ), $2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.00(1$ $\mathrm{H}, \mathrm{dt}, J 11.8$ and $7.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}$ ), 1.71 ( 2 H , quintet, $J 7.4$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ ), $1.11\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $1.01(3 \mathrm{H}$, $\left.\mathrm{d}, J 6.9, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 75.6^{+}\left({ }^{2} J_{\mathrm{PC}} 4.7, \mathrm{CHOH}\right), 65.0^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 51.3^{+}$
$\left(\mathrm{CHSCH}_{2}\right), 42.6^{+}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 65.2, \mathrm{PCH}\right)$, $34.9^{-}, 31.0^{-}, 29.8^{-}$ $\left[\left(\mathrm{CH}_{2}\right)_{3}\right], 28.0^{+}\left(\mathrm{CHMe}_{2}\right), 22.7^{+}\left({ }^{3} \mathrm{JPC}_{\mathrm{PC}} 4.2, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $18.9^{+}\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 464\left(0.3 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 313[16, \mathrm{M}-$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right], 287\left[98, \mathrm{Ph}_{2} \mathrm{POCH}\left(\mathrm{CHMe}_{2}\right) \mathrm{CHOH}\right], 243$ $\left(20, \mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{6}\right), 202\left(32, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

Attack of 1,1-dimethylethanethiol on the epoxy alcohol syn-1e under $\mathrm{Me}_{3} \mathrm{Al}$ catalysis
Similarly, the epoxy alcohol syn-1e ( $193 \mathrm{mg}, 0.584 \mathrm{mmol}$ ) and 1,1-dimethylethanethiol ( $0.08 \mathrm{~cm}^{3}, 0.71 \mathrm{mmol}, 1.2$ equiv.) gave, after being heated under reflux for 1 h , and purification by flash chromatography, eluting with EtOAc, ( $2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{~S}$ )-4-diphenyl-phosphinoyl-2-(1,1-dimethylethylsulfanyl)-5-methylhexane-1,3diol $20(14.7 \mathrm{mg}, 6 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+4.3$ (c 1.00 in $\mathrm{CHCl}_{3}$; $65 \%$ ee) (Found: $\mathrm{M}-\mathrm{Me}_{3} \mathrm{C}, 363.1198 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{PS}$ requires $\left.M-\mathrm{Me}_{3} \mathrm{C}, 363.1183\right) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.36 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3600-3100(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.99(1 \mathrm{H}, \mathrm{dd}, J 20.9$ and 10.7, $\mathrm{CHOH}), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J 11.8\right.$ and $\left.3.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.67(1 \mathrm{H}$, dd, $J 11.7$ and $\left.7.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.18(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{CHP}), 2.83$ ( 1 H , ddd $, J 10.2,7.0$ and $\left.2.9, \mathrm{CHSCH}_{2}\right), 2.17(1 \mathrm{H}, \mathrm{d} \times$ septet, $J$ 1.0 and 6.8, $\mathrm{CH} \mathrm{Me}_{2}$ ), $1.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\left.\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.77\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 132-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 73.1^{+}(\mathrm{CHOH}), 65.9^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $48.4^{+}$(CHS), $44.8^{+}\left({ }^{1} J_{\mathrm{PC}} 69.2, \mathrm{PCH}\right), 43.6^{-}\left(\mathrm{CMe}_{3}\right), 31.7^{+}$ $\left(\mathrm{CMe}_{3}\right), 28.2^{+}\left(\mathrm{CHMe}_{2}\right), 23.2^{+}\left({ }^{3} J_{\mathrm{PC}} 14.1, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $18.9^{+}\left(\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 363\left(6 \%, \mathrm{M}-\mathrm{CMe}_{3}\right), 345(7.5, \mathrm{M}-$ $\left.\mathrm{CMe}_{3}-\mathrm{H}_{2} \mathrm{O}\right), 313\left(7, \quad \mathrm{M}-\mathrm{Me}_{3} \mathrm{CS}-\mathrm{H}_{2} \mathrm{O}\right), 287$ [78, $\left.\mathrm{Ph}_{2} \mathrm{POCH}(\mathrm{CHMe} 2) \mathrm{CHOH}\right], 243\left(18, \mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{6}\right), 219$ (8, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ ), 202 (35, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$ ).

Also obtained was (2R,3R,4S)-4-diphenylphosphinoyl-2,5-dimethylhexane-1,3-diol 21 ( $103.3 \mathrm{mg}, 51 \%$ ) as minute needles, $\mathrm{mp} 123-125^{\circ} \mathrm{C}$ (from EtOAc-MeOH), $[\alpha]_{\mathrm{D}}^{25}+18.0(c 0.78$ in $\mathrm{CHCl}_{3} ; 65 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}, 347.1787 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}+\mathrm{H}, 347.1776) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.25 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3600-3100(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.98(1 \mathrm{H}, \mathrm{dd}, J 22.2$ and $10.0, \mathrm{CHOH}), 3.52\left(1 \mathrm{H}, \mathrm{dd}, J 11.7\right.$ and $\left.7.8, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.47(1$ H , dd, $J 11.7$ and $\left.4.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.46(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{CHP})$, $2.14\left(1 \mathrm{H}\right.$, dd $\times$ quintet, $J 11.6,2.4$ and $\left.6.9, \mathrm{HOCH}_{2} \mathrm{CHMe}\right)$, $1.43(1 \mathrm{H}, \mathrm{d} \times$ septet, $J 4.2$ and $6.9, \mathrm{CHMe} 2), 1.12(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ), $1.00\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{HOCH}_{2} \mathrm{CHMe}\right)$ and $0.62(3$ $\left.\mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 132-128 $\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 76.3^{+}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}} 5.2, \mathrm{CHOH}\right), 67.7^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 44.1^{+}$ $\left({ }^{1} J_{\mathrm{PC}} 69.3, \mathrm{PCH}\right), 39.3^{+}\left(\mathrm{HOCH}_{2} \mathrm{CHMe}\right), 27.8^{+}\left(\mathrm{CHMe}_{2}\right)$, $23.0^{+} \quad\left({ }^{3} J_{\mathrm{PC}} \quad 15.4, \quad \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $18.7^{+}$and $14.3^{+}$ $\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$ and $\mathrm{HOCH}_{2} \mathrm{CHMe}$ ); $m / z 347(2 \%, \mathrm{M}+\mathrm{H}), 287$ (80, $\left.\mathrm{Ph}_{2} \mathrm{POC}_{5} \mathrm{H}_{10} \mathrm{O}\right), 219\left(8, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}\right)$ and 202 (100, $\mathrm{Ph}_{2} \mathrm{POH}$ ).

Irradiation of the signal at $\delta 1.00$ in the ${ }^{1} \mathrm{H}$ NMR spectrum resulted in simplification of the signal at $\delta$ 2.14. Similarly, irradiation at $\delta 0.62$ simplifies the signal at $\delta 1.43$.

Attack of trimethylaluminium on the epoxy alcohol syn-1e
Similarly, the epoxy alcohol ${ }^{6}$ syn-1e ( $106 \mathrm{mg}, 0.321 \mathrm{mmol}$ ), with trimethylaluminium ( $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in toluene; 0.51 $\mathrm{cm}^{3}, 1.02 \mathrm{mmol}, 3.2$ equiv.) but no thiol, gave, after refluxing for 20 h , and purification by flash chromatography, eluting with $\mathrm{EtOAc}-2.5 \% \mathrm{MeOH}$, the diol 21 ( $68.7 \mathrm{mg}, 62 \%$ ).
(2S,3S,4S)-2-Azido-4-diphenylphosphinoyl-5-methylhexane-1,3diol 22
Trimethylsilyl azide ( $90 \% ; 0.10 \mathrm{~cm}^{3}, 0.68 \mathrm{mmol}, 3.6$ equiv.) and titanium tetraisopropoxide ( $0.10 \mathrm{~cm}^{3}, 0.34 \mathrm{mmol}, 1.8$ equiv.) were added to a solution of the epoxy alcohol ${ }^{6}$ syn-1e $(63.0 \mathrm{mg}$, 0.191 mmol ) in dry benzene ( $2 \mathrm{~cm}^{3}$ ). The yellow mixture was heated under reflux for 3 h , concentrated, diluted with dichloromethane, and stirred vigorously with dilute hydrochlo-
ric acid for 1 h . Water $\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then extracted with dichloromethane ( $\times 3$ ). The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash chromatography, eluting with EtOAc, gave the azide 22 ( $43.4 \mathrm{mg}, 61 \%$ ) as a powder, $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C}$ (from EtOAcMeOH ), $[\alpha]_{\mathrm{D}}^{25}+21.0\left(c 0.2\right.$ in $\mathrm{CHCl}_{3} ; 65 \%$ ee) (Found: $\mathrm{M}+$ $\mathrm{H}, 374.1623 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires $M+\mathrm{H}, 374.1633$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.52 ; v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 2110\left(\mathrm{~N}_{3}\right), 1440$ $(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.0-7.4(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ ), 6.05 ( $1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{CHOH}$ ), $4.02(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and 7.2, CHOH ), $3.88\left(1 \mathrm{H}, \mathrm{dd}, J 11.6\right.$ and $\left.4.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.77(1$ $\mathrm{H}, \mathrm{dd}, J 11.7$ and 4.4, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.89(1 \mathrm{H}, \mathrm{dt}, J 9.9$ and 4.7, $\left.\mathrm{CHN}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $2.0, \mathrm{CHP}), 2.1(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}_{2}$ ), 1.12 ( $3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $1.01(3 \mathrm{H}, \mathrm{d}, J$ 6.9, $\left.\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, $71.2^{+}\left({ }^{2} J_{\mathrm{PC}} 5.2, \mathrm{CHOH}\right), 64.6^{+}\left(\mathrm{CHN}_{3}\right), 64.0^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $41.7^{+}\left({ }^{1} J_{\mathrm{PC}} 65.8, \mathrm{PCH}\right), 28.0^{+}\left(\mathrm{CHMe}_{2}\right), 22.7^{+}\left({ }^{3} J_{\mathrm{PC}} 13.8\right.$, $\mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $19.2^{+}\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 374(1 \%, \mathrm{M}+\mathrm{H})$, 287 ( $100, \mathrm{M}-\mathrm{CH}_{2} \mathrm{OHCHN}_{3}$ ), 202 ( $30, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

Increasing the polarity of the eluent to EtOAc-10\% MeOH gave starting material syn-1e ( $16.0 \mathrm{mg}, 25 \%$ ).

## Attack of trimethylsilyl azide on the epoxy alcohol anti-1g

In the same way, the epoxy alcohol ${ }^{6}$ anti- $1 \mathrm{~g}(67.8 \mathrm{mg}, 0.214$ mmol ) gave, after being heated under reflux for 4 h , and after purification by PLC, eluting three times with EtOAc, (2R,3R,4S)-2-azido-4-diphenylphosphinoylhexane-1,3-diol 24 $(14.4 \mathrm{mg}, 19 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+7.1\left(c 1.44\right.$ in $\mathrm{CDCl}_{3} ;>95 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}, 360.1486 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires $M+$ $\mathrm{H}, 374.1511) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.36 ; v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH})$, $2110\left(\mathrm{~N}_{3}\right), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 4.14(1 \mathrm{H}, \mathrm{dt}, J$ 1.6 and $10.5, \mathrm{CHOH}), 4.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.95(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.65\left(1 \mathrm{H}, \mathrm{brt}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.42(1 \mathrm{H}, \mathrm{dt}, J 10.0$ and $\left.5.3, \mathrm{CHN}_{3}\right), 2.58(1 \mathrm{H}, \mathrm{dt}, J 5.9$ and $5.3, \mathrm{CHP}), 1.94(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right)$ and $0.79(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 68.7^{+}\left({ }^{2} J_{\mathrm{PC}} 5.7\right.$, $\mathrm{CHOH}), 63.7^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 12.3, \mathrm{CHN}_{3}\right), 62.7^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 39.4^{+}$ ( $\left.{ }^{1} J_{\mathrm{PC}} 69.6, \mathrm{PCH}\right), 15.1^{+}\left({ }^{3} J_{\mathrm{PC}} 7.4, \mathrm{Me}\right)$ and $14.6^{-}\left(\mathrm{CH}_{2} \mathrm{Me}\right) ; m / z$ ( +FAB ) $360(100 \%, \mathrm{M}+\mathrm{H}), 202\left(38, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ( 98 , $\mathrm{Ph}_{2} \mathrm{PO}$ ). The peaks at $\delta 5.21$ and 3.65 in the ${ }^{1} \mathrm{H}$ NMR spectrum disappear after a $\mathrm{D}_{2} \mathrm{O}$ shake.
Also obtained was (2R,3S,4S)-3-azido-4-diphenylphosphin-oylhexane-1,2-diol 23 ( $20.6 \mathrm{mg}, 27 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}-33.5$ (c 2.06 in $\mathrm{CDCl}_{3} ;>95 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}, 360.1441$. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}+\mathrm{H}, 374.1511$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.21$; $v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 2110\left(\mathrm{~N}_{3}\right), 1440(\mathrm{PPh})$ and 1150 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.31$ ( 1 $\mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 3.91\left(1 \mathrm{H}\right.$, ddd, $J 13.9,9.0$ and $2.0, \mathrm{CHN}_{3}$ ), 3.75 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right.$ and CHOH$), 3.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right)$, $2.79(1 \mathrm{H}$, dddd, $J 13.5,8.5,4.2$ and 2.2, CHP), 2.30 ( 1 H , br s, $\mathrm{CH}_{2} \mathrm{OH}$ ), 1.95-1.65 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$ ) and 0.91 ( $3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}$ ); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, $69.7^{+}(\mathrm{CHOH}), 63.9^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.2^{+}\left(\mathrm{CHN}_{3}\right), 43.2^{+}{ }^{(1}{ }^{1} \mathrm{JPC}$ $67.6, \mathrm{PCH}), 18.0^{-}\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and $13.9^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 10.6, \mathrm{Me}\right) ; m / z$ $(+\mathrm{FAB}) 360(82 \%, \mathrm{M}+\mathrm{H}), 202\left(32, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## Attack of trimethylsilyl azide on the expoxy alcohol syn-1g

In the same way, the epoxy alcohol ${ }^{6}$ syn- 1 g ( $35.3 \mathrm{mg}, 0.112$ mmol ) gave, after being heated under reflux for 2 h , and after purification by flash chromatography, ( $2 \mathrm{R}, 3 \mathrm{R}, 4 \mathrm{R}$ )-2-azido-4-diphenylphosphinoylhexane-1,3-diol $26(15.7 \mathrm{mg}, 39 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}-13.1$ ( $c 1.57$ in $\mathrm{CDCl}_{3} ;>95 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}$, 360.1494. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires $M+\mathrm{H}, 374.1511$ ); $R_{\mathrm{F}}{ }^{-}$ (EtOAc) $0.31 ; v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 2110\left(\mathrm{~N}_{3}\right), 1440$
( PPh ) and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.0-7.4(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$, $5.65(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{CHOH}), 4.0-3.75(3 \mathrm{H}, \mathrm{m}$, CHOH and $\mathrm{CH}_{2} \mathrm{OH}$ ), $3.20\left(1 \mathrm{H}, \mathrm{dt}, J 1.05\right.$ and $\left.4.9, \mathrm{CHN}_{3}\right), 2.63$ $(1 \mathrm{H}, \mathrm{dq}, J 3.3$ and 6.2 , CHP), $2.50(1 \mathrm{H}$, dd, $J 7.6$ and 4.5 , $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right)$ and $0.95(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128$ $\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 73.1^{+}\left({ }^{2} J_{\mathrm{PC}} 5.7, \mathrm{CHOH}\right), 64.4^{+}\left(\mathrm{CHN}_{3}\right), 64.3^{-}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 38.6^{+}$( $\left.{ }^{1} \mathrm{~J}_{\mathrm{PC}} 65.8, \mathrm{PCH}\right)$, $20.4^{-}\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and $12.6^{+}$ $\left({ }^{3} J_{\mathrm{PC}} 12.1, \mathrm{Me}\right) ; m / z(+\mathrm{FAB}) 360(90 \%, \mathrm{M}+\mathrm{H}), 202(45$, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$. The peaks at $\delta 5.65$ and 2.50 in the ${ }^{1} \mathrm{H}$ NMR spectrum disappear after a $\mathrm{D}_{2} \mathrm{O}$ shake.

Also obtained was ( $2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{R}$ )-3-azido-4-diphenylphosphin-oylhexane-1,2-diol $25(8.6 \mathrm{mg}, 21 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}-21.5$ (c 0.86 in $\mathrm{CDCl}_{3} ;>95 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}, 360.1495$. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires $M+\mathrm{H}, 374.1511$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.21$; $v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 2110\left(\mathrm{~N}_{3}\right), 1440(\mathrm{PPh})$ and 1150 ( $\mathrm{P}=\mathrm{O}$ ); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.7(1$ H , br s, CHOH ), $4.04(1 \mathrm{H}$, ddd, J 20.2, 9.8 and 1.8 , $\mathrm{CHN}_{3}$ ), $3.76\left(1 \mathrm{H}\right.$, dd, $J 11.5$ and $2.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$ ), 3.65 (1 $\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.57\left(1 \mathrm{H}, \mathrm{m}, J 11.5\right.$ and 4.7, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.73$ $(1 \mathrm{H}, \mathrm{t}, J 10.0, \mathrm{CHP}), 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.71(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Me}\right)$ and $0.93(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 134-128 ( $\mathrm{Ph}_{2} \mathrm{PO}$ ), $72.4^{+}(\mathrm{CHOH}), 63.8^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.1^{+}$ $\left(\mathrm{CHN}_{3}\right), 42.3^{+}\left({ }^{1} J_{\mathrm{PC}} 67.6, \mathrm{PCH}\right)$, $19.5^{-}\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and $14.0^{+}$ $\left({ }^{3} J_{\mathrm{PC}} 11.4, \mathrm{Me}\right) ; m / z(+\mathrm{FAB}) 360(60 \%, \mathrm{M}+\mathrm{H})$, 202 ( 47 , $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## Attack of $\mathrm{Me}_{2}$ AlNHBn on the epoxy alcohol anti-1e

Trimethylaluminium ( $2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene; $0.35 \mathrm{~cm}^{3}$, $0.7 \mathrm{mmol}, 2$ equiv.) was added dropwise to a stirred solution of benzylamine ( $80 \mathrm{~mm}^{3}, 0.73 \mathrm{mmol}, 2.1$ equiv.) in dry dichloromethane ( $1 \mathrm{~cm}^{3}$ ) at room temperature under nitrogen. Gas was evolved. After 45 min , this mixture was added to a stirred solution of the epoxy alcohol ${ }^{6}$ anti-1e $(115 \mathrm{mg}, 0.348$ mmol ) in dry dichloromethane ( $2 \mathrm{~cm}^{3}$ ) under nitrogen with continued stirring at room temperature for 3 days. Dilute aqueous sodium hydroxide $\left(1 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$ were carefully added to the mixture which was then extracted with dichloromethane $(\times 3)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash chromatography, eluting with EtOAc and then EtOAc- $10 \% \mathrm{MeOH}$, followed by HPLC, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-10 \% \mathrm{MeOH}$, gave the amine $27(28.1 \mathrm{mg}, 19 \%)$ (Found: $\mathrm{M}+\mathrm{H}, 438.2161 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}$ requires $M+\mathrm{H}$, $438.2198) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.08 ; \nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3600-3200(\mathrm{OH}$ and NH$), 1440(\mathrm{PPh})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.06(1 \mathrm{H}, \mathrm{d} \times$ fine $\mathrm{m}, J 9.3, \mathrm{CHOH})$, $3.93\left(1 \mathrm{H}, \mathrm{d}, J 14.3, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.70\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.18(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{CHP}), 2.77(1 \mathrm{H}, \mathrm{d} \times$ fine $\mathrm{m}, J$ 9.0, CHN), 2.25 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$ ), 1.11 ( $3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and 0.74 ( $3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 72.1^{+}(\mathrm{CHOH}), 65.0^{+}$ (CHN), 64.8- $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 50.8^{-}\left(\mathrm{PhCH}_{2} \mathrm{~N}\right), 41.9^{+}\left({ }^{1} \mathrm{JPC}_{\mathrm{PC}} 67.0\right.$, $\mathrm{PCH}), 25.8^{+}\left(\mathrm{CHMe}_{2}\right), 24.0^{+}\left(\mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $22.8^{+}$ $\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \quad m / z \quad 376$ ( $1 \%, \quad \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$ ), 287 ( 58, $\mathrm{Ph}_{2} \mathrm{POC}_{5} \mathrm{H}_{10} \mathrm{O}$ ), $257\left(28, \mathrm{Ph}_{2} \mathrm{POC}_{4} \mathrm{H}_{8}\right.$ ), 202 ( $52, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$ ). Also obtained was starting material (29.4 $\mathrm{mg}, 25 \%$ ).
In another experiment with the epoxy alcohol anti-1e (127 $\mathrm{mg}, 0.384 \mathrm{mmol}$ ), the reaction mixture was heated under reflux for 19 h . After work-up, purification of the residue by flash chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-10 \% \mathrm{MeOH}$, gave (S,Z)-4-diphenylphosphinoyl-5-methylhex-3-ene-1,2-diol 30 (69.3 $\mathrm{mg}, 55 \%$ ) as an oil (Found: $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 312.1303 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}, 312.1279) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.26 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3600-3100(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.62(1 \mathrm{H}, \mathrm{dd}, J 39.0$ and 7.4 , $\mathrm{C}=\mathrm{CH}), 4.77(1 \mathrm{H}, \mathrm{ddt}, J 4.7,2.3$ and $6.6, \mathrm{CHOH}), 3.65(2 \mathrm{H}, \mathrm{m}$,
$\mathrm{CH}_{2} \mathrm{OH}$ ), 2.15 ( 1 H , septet, $J 7.0, \mathrm{C} H \mathrm{Me}_{2}$ ), 0.91 ( $3 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and 0.83 ( $3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$ ); $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 146.1^{+}\left({ }^{2} J_{\mathrm{PC}} 5.7, \mathrm{PC}=\mathrm{C}\right), 141.8^{+}\left({ }^{1} J_{\mathrm{PC}} 87.0, \mathrm{PC}\right)$, 133-128 ( $\mathrm{Ph}_{2} \mathrm{PO}$ ), $68.6^{+}\left({ }^{3} \mathrm{JPC}_{\mathrm{PC}} 7.2, \mathrm{CHOH}\right), 65.1^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $30.6^{+}\left({ }^{2} J_{\mathrm{PC}} 15.3, \mathrm{CHMe}_{2}\right)$ and $23.1^{+}\left(\mathrm{CHMe}_{2}\right) ; m / z 312(6.5 \%$, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ ), 299 ( $100, \mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}$ ), 202 (36, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 (51, $\mathrm{Ph}_{2} \mathrm{PO}$ ).
Irradiation of the signal at $\delta 4.80$ in the ${ }^{1} \mathrm{H}$ NMR spectrum resulted in a NOE at $\delta 6.58$ and at the ortho hydrogens of the $\mathrm{Ph}_{2} \mathrm{PO}$ envelope ( $\delta$ 7.7). Similarly, irradiation at $\delta 2.15$ enhanced the signals at $\delta 6.58$ and 7.7.

## Attack of $\mathrm{Me}_{2}$ AlNHBn on the epoxy alcohol syn-1e

In the same way, the epoxy alcohol ${ }^{6}$ syn-1e ( $115 \mathrm{mg}, 0.348$ mmol ) gave, after 20 h , work-up and purification by flash chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-6 \% \mathrm{MeOH}$, material ( 28.3 mg ) which ${ }^{1} \mathrm{H}$ NMR showed to consist of a $1: 1$ mixture of starting material syn-1e and the amine 28, $[\alpha]_{\mathrm{D}}^{25}+22.9$ (c 0.65 in $\mathrm{CHCl}_{3} ; 65 \%$ ee) (Found: $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}, 376.1818$. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}$ requires $\left.\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}, 376.1830\right) ; R_{\mathrm{F}}(\mathrm{EtOAc})$ $0.08 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3600-3200(\mathrm{OH}$ and NH$), 1440(\mathrm{PPh})$ and 1170 ( $\mathrm{P}=\mathrm{O}$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $5.6(1 \mathrm{H}, \mathrm{br}$ s, NH), $4.04(1 \mathrm{H}, \mathrm{dd}, J 21.0$ and $9.0, \mathrm{CHOH}), 3.8-$ $3.6\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{~N}\right.$ and $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and 4.6, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$ ), $3.16(1 \mathrm{H}, \mathrm{d} \times$ fine $\mathrm{m}, J 9.7, \mathrm{CHP}), 3.11$ ( $1 \mathrm{H}, \mathrm{d} \times$ fine $\mathrm{m}, J 8.3, \mathrm{CHN}$ ), $2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right.$ ), 1.10 ( 3 $\mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $1.07\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$ ); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 72.0^{+}(\mathrm{CHOH}), 60.8^{+}$ (CHN), 60.4- $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 50.5^{-}\left(\mathrm{PhCH}_{2} \mathrm{~N}\right), 42.7^{+}\left({ }^{1} \mathrm{JPC}^{\mathrm{PC}} 67.1\right.$, $\mathrm{PCH}), 27.9^{+}$( $\mathrm{CHMe}_{2}$ ), $22.9^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}\right.$ 14.4, $\mathrm{CHMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $18.9^{+}\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 376\left(1 \%, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right), 287$ (58, $\mathrm{Ph}_{2} \mathrm{POC}_{5} \mathrm{H}_{10} \mathrm{O}$ ), $257\left(28, \mathrm{Ph}_{2} \mathrm{POC}_{4} \mathrm{H}_{8}\right), 202\left(52, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## ( $\boldsymbol{S}, \boldsymbol{E}$ )-5-Methyl-2-(3-phenylpropylsulfanyl)hex-3-en-1-ol 31

Sodium hydride ( $60 \%$ suspension; $16 \mathrm{mg}, 0.40 \mathrm{mmol}, 3.7$ equiv.) was added to a stirred solution of the sulfide $19(37.3 \mathrm{mg}, 0.094$ $\mathrm{mmol})$ in dry DMF ( $1.5 \mathrm{~cm}^{3}$ ) under nitrogen. The mixture was heated to $60^{\circ} \mathrm{C}$ for 30 min , cooled, quenched with saturated aqueous ammonium chloride ( $1 \mathrm{~cm}^{3}$ ), and partitioned between ether ( $20 \mathrm{~cm}^{3}$ ) and water ( $20 \mathrm{~cm}^{3}$ ). The aqueous layer was separated, extracted with diethyl ether ( $\times 2$ ), and the combined extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by PLC, eluting with hexane-EtOAc (4:1), gave the sulfide 31 ( $16.7 \mathrm{mg}, 58 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}-25.1\left(c 1.19 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.$ ) (Found: $\mathrm{M}^{+}, 264.1566 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OS}$ requires $M, 264.1548$ ); $R_{\mathrm{F}}$ [hexaneEtOAc (4:1)] 0.27; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3300(\mathrm{OH})$ and $1600(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.3-7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.53(1 \mathrm{H}$, dd, $J 15.5$ and $6.6, \mathrm{CH}=\mathrm{CHS}$ ), 5.24 ( 1 H , ddd, $J 15.4,8.7$ and $1.0, \mathrm{CH}=\mathrm{CHS}), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.6.5, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.57$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.6.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 3.32(1 \mathrm{H}$, br q,$J 7$, $\mathrm{CH} \mathrm{SCH}_{2}$ ), $2.70\left(2 \mathrm{H}, \mathrm{ABXY} \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.47(2 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~S}$ ), $2.28\left(1 \mathrm{H}\right.$, octet, $J 6.7, \mathrm{C} H \mathrm{Me}_{2}$ ), $1.89(2 \mathrm{H}$, quintet, $J$ $\left.7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $0.96(6 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{CH} \mathrm{Me}_{2}$ ); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) 142-124 ( Ph and $\mathrm{C}=\mathrm{C}$ ), 64.2$\left(\mathrm{CH}_{2} \mathrm{OH}\right), 50.7^{+}\left(\mathrm{CHSCH}_{2}\right), 34.8^{-}, 31.3^{-}, 29.2^{-}\left[\left(\mathrm{CH}_{2}\right)_{3}\right]$, $31.0^{+}\left(\mathrm{CHMe}_{2}\right), 22.42^{+}$and $22.40^{+}\left(\mathrm{CHMe}_{2}\right) ; m / z 264(2 \%$, $\mathrm{M}^{+}$), $234\left(100, \mathrm{M}-\mathrm{CH}_{2} \mathrm{O}\right), 112\left(77, \mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right)$ and 91 ( $82, \mathrm{PhCH}_{2}$ ).

Addition of $\mathrm{D}_{2} \mathrm{O}$ to the ${ }^{1} \mathrm{H}$ NMR sample resolves $\delta 3.32(1 \mathrm{H}$, br q, $\mathrm{CHSCH}_{2}$ ) to $3.75(1 \mathrm{H}, \mathrm{q}, J 6.7)$ and $2.47(2 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right)$ to $2.47(2 \mathrm{H}, \mathrm{t}, J 7.4)$.
(S,E)-5-Methyl-2-(3-phenylpropylsulfanyl)hex-3-en-1-ol 32 In the same way, the diol $21(64.8 \mathrm{mg}, 0.187 \mathrm{mmol})$, with sodium
hydride ( $60 \%$ suspension; $25 \mathrm{mg}, 0.625 \mathrm{mmol}, 3.3$ equiv.) gave, after 10 min at $60^{\circ} \mathrm{C}$, and after purification by PLC, eluting with hexane-EtOAc ( $4: 1$ ), the alcohol $32(20.7 \mathrm{mg}, 86 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+14.3$ (c 1.02 in $\mathrm{CHCl}_{3} ; 65 \%$ ee) $\left[\right.$ lit.. ${ }^{14}+28.4$ (c 1.0 in $\mathrm{CHCl}_{3} ; 92 \%$ ee) $] ; R_{\mathrm{F}}$ [hexane-EtOAc (4:1)] 0.28; $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3400(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.51$ ( 1 H , ddd, $J 15.5,6.6$ and $0.7, \mathrm{Me}_{2} \mathrm{CHCH}=\mathrm{CH}$ ), $5.18(1 \mathrm{H}$, ddd, $J 15.5,7.8$ and $\left.1.2, \mathrm{Me}_{2} \mathrm{CHC} H=\mathrm{CH}\right), 3.46(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $5.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}$ ), $3.32\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $7.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}$ ), $2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{C}_{2}\right.$ and $\left.\mathrm{HOCH}_{2} \mathrm{CHMe}\right), 0.97(6 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{CH} \mathrm{Me}_{2}$ ) and $0.96\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{HOCH}_{2} \mathrm{CHMe}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 139.7^{+}, 129.0^{+}(\mathrm{CH}=\mathrm{CH}), 67.3^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right), 39.6^{+}$ $\left(\mathrm{HOCH}_{2} \mathrm{CH}\right), 31.0^{+}\left(\mathrm{Me}_{2} \mathrm{CH}\right), 22.64^{+}, 22.56^{+}$and $16.6^{+}$ ( $\mathrm{Me} \times 3$ ).
( $S, Z$ )-5-Methyl-2-(3-phenylpropylsulfanyl)hex-3-en-1-ol 33 In the same way, the sulfide 18 ( $35.4 \mathrm{mg}, 0.0734 \mathrm{mmol}$ ), with sodium hydride ( $60 \%$ suspension; $14.25 \mathrm{mg}, 0.356 \mathrm{mmol}, 4.8$ equiv.) gave, after 75 min at $80^{\circ} \mathrm{C}$, and after purification by PLC, eluting with hexane-EtOAc (7:3), the sulfide 33 ( 3.2 mg , $16 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}+33.1$ ( $c 0.32$ in $\mathrm{CDCl}_{3} ; 85 \%$ ee) (Found: $\mathrm{M}^{+}, 264.1557$. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OS}$ requires $M, 264.1548$ ); $R_{\mathrm{F}}$ [hexaneEtOAc (4:1)] 0.27; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3700(\mathrm{OH})$ and 1600 ( Ph ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ) $7.3-7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.42(1 \mathrm{H}, \mathrm{t}, J$ 10.4, CH=CHCHS), 5.17 ( $1 \mathrm{H}, \mathrm{t}, J 10.4, \mathrm{CH}=\mathrm{CHCHS}$ ), 3.75 ( 1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHSCH}_{2}$ ), 3.56 ( $2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{2} \mathrm{OH}$ ), $2.71(2 \mathrm{H}, \mathrm{t}, J$ 7.3, $\mathrm{CH}_{2} \mathrm{Ph}$ ), $2.6\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 1.90$ ( 2 H , quintet, $J 7.0, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ ) and $0.96(6 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{CHMe} \mathrm{e}_{2}\right) ; m / z 264\left(0.3 \%, \mathrm{M}^{+}\right), 233\left(34, \mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right), 112$ [100, M - $\left.\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right]$ and 91 (98, $\mathrm{PhCH}_{2}$ ).

Addition of $\mathrm{D}_{2} \mathrm{O}$ to the ${ }^{1} \mathrm{H}$ NMR sample resolves $\delta 3.75(1 \mathrm{H}$, br s, $\mathrm{CH} \mathrm{SCH}_{2}$ ) to $3.75(1 \mathrm{H}, \mathrm{dt}, J 10.1$ and 7.0$)$ and $2.6(2 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right)$ to $2.51(2 \mathrm{H}, \mathrm{t}, J 7.0)$
(3RS,4SR,5RS)-5-Diphenylphosphinoyl-3,4-epoxydecan-2-one 34
Jones reagent ( $2.66 \mathrm{~mol} \mathrm{dm}^{-3}$ in $\mathrm{CrO}_{3} ; 0.65 \mathrm{~cm}^{3}$ ) was added in one portion to a stirred solution of the epoxy alcohol anti,syn-1b ( $100 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) in acetone ( $5 \mathrm{~cm}^{3}$ ). After being stirred for 30 min at $0^{\circ} \mathrm{C}$, the mixture was carefully poured into saturated aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with ether $(2 \times 50$ $\mathrm{cm}^{3}$ ). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the epoxy ketone 32 $(62 \mathrm{mg}, 62 \%)$ as a solid, $\mathrm{mp} 114-114.5^{\circ} \mathrm{C}$ (from EtOAchexane) (Found: C, $71.25 ; \mathrm{H}, 7.2 ; \mathrm{P}, 8.15 \% ; \mathrm{M}^{+}, 370.1686$. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 71.35 ; \mathrm{H}, 7.30 ; \mathrm{P}, 8.40 \% ; M, 370.698$ ); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1708(\mathrm{C}=\mathrm{O}), 1441(\mathrm{P}-\mathrm{Ph})$ and $1181(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.81\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.0-2.4[9 \mathrm{H}$, $\mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}$ and PCH$], 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}), 2.92(1 \mathrm{H}, \mathrm{d}, J 2$, $\mathrm{CHC}=\mathrm{O}), 3.31(1 \mathrm{H}, \mathrm{dt}, J 9$ and $2, \mathrm{CHCHP})$ and 7.3-8.0 $(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ); m/z 370 ( $2 \%$ ), 327 ( $20, \mathrm{M}-\mathrm{MeCO}$ ), 257 (57, $\mathrm{Ph}_{2} \mathrm{POCHCHCHO}$ ), 219 (34, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ ), 202 (84, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

## (3RS,4SR,5SR)-5-Diphenylphosphinoyl-3,4-epoxydecan-2-one

 35In the same way, the epoxy alcohol syn,anti-1b ( $600 \mathrm{mg}, 1.688$ $\mathrm{mmol})$ gave the epoxy ketone $35(468 \mathrm{mg}, 74 \%)$ as a solid, mp $120-121^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, $71.0 ; \mathrm{H}, 7.13$; P, 8.57. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 71.35 ; \mathrm{H}, 7.30 ; \mathrm{P}, 8.40 \%$ ) (Found: $\mathrm{M}-\mathrm{MeC}=\mathrm{O}, 327.1506 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}^{+}$, 327.1514); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1708(\mathrm{C}=\mathrm{O}), 1441(\mathrm{P}-\mathrm{Ph})$ and $1181(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.0-1.7[8 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}), 2.2-2.4(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 3.25-$ $3.35(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCHC}=\mathrm{O})$ and $7.4-7.9\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z$ 327 ( $23 \%, \mathrm{M}-\mathrm{MeCO}$ ), 257 (53, $\mathrm{Ph}_{2} \mathrm{POCHCHCHO)}$,219 (41, $\left.\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}\right), 202\left(70, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.
(3RS,4SR,5SR)-5-Diphenylphosphinoyl-3,4-epoxy-4-methyl-decan-2-one 36
A solution of the epoxy alcohol anti,syn-1f ( $116 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) in dichloromethane $\left(1.5 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of pyridinium chlorochromate ( $162 \mathrm{mg}, 0.75 \mathrm{mmol}$ ) in dichloromethane ( $3.5 \mathrm{~cm}^{3}$ ). Stirring was continued at room temperature for 2 h after which the mixture was diluted with diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ and stirred for 10 min . The supernatant liquid was removed and the residual tar was extracted with ether ( $3 \times 10 \mathrm{~cm}^{3}$ ). The combined extracts were washed with 2 mol dm ${ }^{-3}$ aq. $\mathrm{NaOH}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and water ( $20 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a mixture of product and unchanged starting material. Purification of the mixture by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc) gave the epoxy ketone $36[41 \mathrm{mg}, 36 \%$ ( $54 \%$ based on recovered starting material)] as a solid, $\mathrm{mp} 158-161^{\circ} \mathrm{C}$, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.36$ (Found: M, 384.1858. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}$ requires $\left.M^{+}, 384.1854\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725$ ( $\mathrm{C}=\mathrm{O}$ ), $1440(\mathrm{P}-\mathrm{Ph})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.832(3 \mathrm{H}, \mathfrak{t}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.1-2.1\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 1.67(3$ $\mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O})$, $2.31(1 \mathrm{H}, \mathrm{dt}, J 2$ and $10, \mathrm{PCH}), 3.36(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHC}=\mathrm{O})$ and $7.4-8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 384(10 \%), 355$ (15), 341 (16, M - MeCO), 219 (20, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ ) and 202 (100, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$.

## (3RS,4SR,5SR)-5-Diphenylphosphinoyl-3,4-epoxy-4-methyl-

 decan-2-one 37By the method given for 35 , the epoxy alcohol $\operatorname{syn}, \operatorname{syn}-1 \mathrm{f}(2.05 \mathrm{~g}$, 5.3 mmol ) gave, after purification by flash chromatography (eluting with EtOAc) the epoxy ketone $37(1.57 \mathrm{~g}, 77 \%)$ as a solid, mp 131.5-132.5 ${ }^{\circ} \mathrm{C}$ (from hexane-EtOAc) (Found: M, 384.1846. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}$ requires $M^{+}, 384.1854$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{1} 1715(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.82\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.1-2.0[8 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right], 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}), 2.37(1 \mathrm{H}, \mathrm{m}$, $\mathrm{PCH}), 3.78(1 \mathrm{H}, \mathrm{s}, \mathrm{CHC}=\mathrm{O})$ and $7.4-8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}\right), 22.3$ (t, $\mathrm{MeCH}_{2}$ ), $25.5\left(\mathrm{t}, \mathrm{MeCH}_{2} \mathrm{CH}_{2}\right), 28.2\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$, $28.8(\mathrm{dt}$, $J_{\mathrm{PC}} 11.4, \mathrm{PCHCH}_{2} \mathrm{CH}_{2}$ ), $31.6(\mathrm{t}, \mathrm{PCHCH} 2), 46.4\left(\mathrm{dd}, J_{\mathrm{PC}} 67\right.$, PCH), 61.7 (s, MeCCHP), 63.3 (dd, $J_{\mathrm{PC}} 9.2$, CHC=O), 128.5133.7 ( $10 \mathrm{C}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ) and 203.3 (s, $\mathrm{C}=\mathrm{O}$ ); $m / z 384$ ( $11 \%$ ), 355 (15), 341 ( $19, \mathrm{M}-\mathrm{MeCO}$ ), 219 (27, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ ), 202 (100, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $78, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## Addition of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathbf{S H}$ to the epoxy ketone 34

A solution of the crude epoxy ketone $34(222 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 3-phenylpropanethiol ( $0.2 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}$ ) in a mixture of triethylamine $\left(0.5 \mathrm{~cm}^{3}\right)$ and methanol $\left(0.5 \mathrm{~cm}^{3}\right)$ was stirred at room temperature under nitrogen for 16 h . The reaction mixture was then applied directly to three PLC plates $\left(\mathrm{SiO}_{2}\right.$, EtOAc-50\% hexane) which gave the adduct ( $234 \mathrm{mg}, 75 \%$ overall yield from 34) as an oil. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed this to be a mixture of the $(3 R S, 4 R S, 5 R S)$ - and ( $3 R S, 4 S R, 5 S R$ )-diastereoisomers of 5-diphenylphosphinoyl-2-oxo-3-(3-phenylpropylsulfanyl)decan-4-ol 38. The diastereoisomeric ratio was $c a$. 5:1 [Found: $\mathrm{M}^{+}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHC}$ $(\mathrm{OH}) \mathrm{Me}, 314.1427 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires 314.1435$] ; R_{\mathrm{F}}(\mathrm{EtOAc}-$ $50 \%$ hexane) $0.32 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1603(\mathrm{C}=\mathrm{O})$, $1441(\mathrm{P}-\mathrm{Ph})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.74(3 \mathrm{H}$, t. J 6, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 0.8-3.0 ( $15 \mathrm{H}, \mathrm{m}$ ), $2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$, $3.37^{\text {major }}$ and $3.57^{\text {minor }}\left(1 \mathrm{H}, 2 \times \mathrm{d}, J 10^{\text {major }}\right.$ and $9^{\text {minor }}, \mathrm{SCH}$ ), $4.29(1 \mathrm{H}, \mathrm{t}, J 10, \mathrm{CHOH}), 7.0-7.4\left(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right)$ and $7.4-$ 8.0 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ); $m / z 314\left[4 \%, \mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHC}-\right.$ $(\mathrm{OH}) \mathrm{Me}], 286\left[15, \mathrm{Ph}_{2} \mathrm{POHCH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right], 244(25), 229(40$, $\mathrm{Ph}_{2} \mathrm{POC}_{2} \mathrm{H}_{4}$ ), 208, $\left[55, \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHC}(\mathrm{OH}) \mathrm{Me}\right], 202$ (50, $\mathrm{Ph}_{2} \mathrm{POH}$ ), 201 (50, $\mathrm{Ph}_{2} \mathrm{PO}$ ) and 91 ( $100, \mathrm{C}_{7} \mathrm{H}_{7}$ ).

## Addition of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathbf{S H}$ to the epoxy ketone 35

In a similar way, the epoxy ketone 35 gave the adduct ( 275 mg ,
$88 \%$ ) as an oil. The ${ }^{1} \mathrm{H}$ NMR spectrum of the product showed it to be a mixture of the ( $3 R S, 4 R S, 5 S R$ )- and ( $3 R S, 4 S R, 5 R S$ )diastereoisomers of 5-diphenylphosphinoyl-2-oxo-3-(3-phenyl-propylsulfanyl)decan-4-ol 40. The diastereoisomeric ratio was determined to be $4: 1$ by comparison of the signals at $\delta$ 3.12 and 3.84 in the ${ }^{1} \mathrm{H}$ NMR spectrum; $R_{\mathrm{F}}($ EtOAc- $50 \%$ hexane) 0.32; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 1704(\mathrm{C}=\mathrm{O}), 1441$ $(\mathrm{P}-\mathrm{Ph})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 0.84(3 \mathrm{H}$, br t, J 7, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), 1.0-3.1 ( $15 \mathrm{H}, \mathrm{m}$ ), 2.13 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$ ), $3.12^{\text {major }}$ and $3.84^{\text {minor }}\left(1 \mathrm{H}, 2 \times \mathrm{d}, J 10^{\text {major }}\right.$ and $8^{\text {minor }}$, CHS), 4.1-4.3 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ ), $7.0-7.3\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.3-$ $8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 327(8 \%), 314\left[2, \mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}-\right.$ $\mathrm{SCHC}(\mathrm{OH}) \mathrm{Me}], 286 \quad\left[7, \mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right], 208$ [92, $\left.\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHCH}(\mathrm{OH}) \mathrm{Me}\right], 202\left(26, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (26, $\mathrm{Ph}_{2} \mathrm{PO}$ ).

## Attempted addition of $\mathbf{P h}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{S H}$ to the epoxy ketone $\mathbf{3 6}$

Butyllithium ( $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $0.15 \mathrm{~cm}^{3}, 0.22$ mmol ) was added in one portion to a stirred solution of $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\left(0.15 \mathrm{~cm}^{3}, 1 \mathrm{mmol}\right)$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen and stirring was continued for 5 min . The epoxy ketone 36 ( $100 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) was added in one portion to the solution which was then warmed to room temperature. Stirring was continued for 40 min after which the mixture was diluted with diethyl ether ( $50 \mathrm{~cm}^{3}$ ), washed with saturated aqueous $\mathrm{CuSO}_{4}\left(2 \times 25 \mathrm{~cm}^{3}\right)$ and water $\left(25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. PLC $\left(\mathrm{SiO}_{2}\right.$, EtOAc-60\% hexane) of this gave 1-(3-phenylpropylsul-fanyl)propan-2-one 44 ( $22 \mathrm{mg}, 38 \%$ ) as an oil, $\boldsymbol{R}_{\mathrm{F}}(\mathrm{EtOAc}-40 \%$ hexane) 0.67 (Found: $\mathrm{M}^{+}$, 208.0921. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires $M, 208.0921) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1705(\mathrm{C}=0) ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.87\left(2 \mathrm{H}, \mathrm{qn}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$, 2.50 and $2.80\left(4 \mathrm{H}, 2 \times \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2}\right), 3.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2}\right)$ and $7.1-7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 208(100 \%), 150\left[38, \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\right]$, 149 [33, $\left.\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right], 118\left(85, \mathrm{PhCH}_{2} \mathrm{CHCH}_{2}\right), 117(80, \mathrm{M}-$ $\mathrm{C}_{7} \mathrm{H}_{7}$ ) and $91\left(85, \mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Also obtained was 3-diphenylphosphinoyloctan-2-one 43 $(48 \mathrm{mg}, 56 \%)$ as an oil, $R_{\mathrm{F}}\left(\right.$ EtOAc- $40 \%$ hexane) $0.26 ; v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O})$, $1443(\mathrm{P}-\mathrm{Ph})$ and $1205(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.0-2.5[8 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 3.61(1 \mathrm{H}, \mathrm{dt}, J 12$ and 3 , $\mathrm{PCH})$ and $7.4-8.1\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 328(8 \%, \mathrm{M}), 285(6$, $\mathrm{M}-\mathrm{MeCO}), 258\left(80, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9}\right)$ and $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

## 5-Diphenylphosphinoyl-3-(3-phenylpropylsulfanyl)decane-2,4diol 39

Sodium borohydride ( 100 mg , excess), was added in one portion to a stirred solution of the ketone $38(200 \mathrm{mg}, 0.54 \mathrm{mmol})$ in methanol $\left(8 \mathrm{~cm}^{3}\right)$ and stirring was continued at $0^{\circ} \mathrm{C}$ for 30 min . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was then added dropwise to the mixture followed by water ( $80 \mathrm{~cm}^{3}$ ). The resulting suspension was extracted with dichloromethane ( $2 \times 40 \mathrm{~cm}^{3}$ ) and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this by $\mathrm{PLC}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}-50 \%\right.$ hexane) gave a major diastereoisomer $39(120 \mathrm{mg}, 60 \%)$ as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-50 \%$ hexane) 0.31 (Found: $\mathbf{M}^{+}-\mathrm{H}_{2} \mathrm{O}, \quad 506.2385 . \quad \mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{PS}$ requires $506.2408)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$ and 1166 ( $\mathrm{P}=\mathrm{O}$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.67\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$ 0.9-1.2 and $1.6-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.27\left(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{3} \mathrm{CH}\right), 1.92$ ( $2 \mathrm{H}, \mathrm{qn}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ ), $2.56\left(2 \mathrm{H}, \mathrm{ABX}_{2} \mathrm{~m}, \mathrm{CH}_{2} \mathrm{~S}\right), 2.72$ ( $2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ph}$ ), $2.89(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and $10, \mathrm{SCH}$ ), 2.95 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$ ), $4.0-4.2(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHOH}), 4.16(1 \mathrm{H}, \mathrm{t}, J 10$, $\mathrm{CHOH})$ and $7.0-8.0\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$) ; \mathrm{m} / z 506(1 \%$, $\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 488 \quad\left(4, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right), 462 \quad(3, \quad \mathrm{M}-$ $\mathrm{MeCHO}-\mathrm{H}_{2} \mathrm{O}$ ), 353 [22, $\left.\mathbf{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}\right], 315$ [75, $\left.\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHCH}(\mathrm{OH}) \mathrm{Me}\right], 202\left(56, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$ ).

Also obtained was a minor diastereoisomer of $39(30 \mathrm{mg}$, $15 \%$ ) as an oil, $R_{\mathrm{F}}\left(\mathrm{EtOAc}-50 \%\right.$ hexane) 0.23 (Found: $\mathrm{M}^{+}$$2 \mathrm{H}_{2} \mathrm{O}$, 488.2318. $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{OPS}$ requires $M^{+}-2 \mathrm{H}_{2} \mathrm{O}$, $488.2302) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1443(\mathrm{P}-\mathrm{Ph})$ and 1166 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 0.70\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$ $0.9-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.24\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CH}_{3} \mathrm{CH}\right), 1.90(2 \mathrm{H}$, qn, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.4-2.7\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SCH}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and PCH $), 4.27(1 \mathrm{H}, \mathrm{dq}, J 2.6$ and $6.2, \mathrm{MeCH}), 4.40(1 \mathrm{H}$, ddd,$J 3.6$, 6.5 and 11.7, PCHCH$), 7.0-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH} 2)$ and $7.3-8.0$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$. Irradiation of the signal at $\delta 2.19$ simplified the signals at $\delta 4.27$ and 4.40 to $(1 \mathrm{H}, \mathrm{q}, J 6.2)$ and $(1 \mathrm{H}, \mathrm{dd}, J$ 11.7 and 3.6), respectively. Irradiation of the signal at $\delta 1.24$ simplified the signal at $\delta 4.27$ to $(1 \mathrm{H}, \mathrm{d}, J 2.6)$. Irradiation of the signal at $\delta 2.06$ simplified the signal at $\delta 4.40$ to $(1 \mathrm{H}$, dd, $J 11.7$ and 6.5); m/z $488\left(4 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right), 355$ [31, M $\left.\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}-\mathrm{H}_{2} \mathrm{O}\right], 315$ [44, $\mathrm{M}-\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHCH}(\mathrm{OH})-$ Me , 202 (90, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

## 5-Diphenylphosphinoyl-3-(3-phenylpropylsulfanyl)decane-2,4diol 41

Sodium borohydride ( 150 mg , excess) was added in one portion to a stirred solution of the ketone $40(270 \mathrm{mg})$ in methanol ( 8 $\mathrm{cm}^{3}$ ) at $0^{\circ} \mathrm{C}$ and stirring was continued for 30 min before careful quenching of the reaction mixture with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$. After dilution with water $\left(80 \mathrm{~cm}^{3}\right)$ the mixture was extracted with dichloromethane $\left(2 \times 40 \mathrm{~cm}^{3}\right)$ and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give an oil. Purification of this crude product by $\mathrm{PLC}\left(\mathrm{SiO}_{2}\right.$, EtOAc- $33 \%$ hexane) gave one diastereiosomer of the diol 41 ( $175 \mathrm{mg}, 65 \%$ ) as an oil, $R_{\mathrm{F}}$ (EtOAc-33\% hexane) 0.34 (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 506.2410 . \mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{PS}$ requires $M$, 506.2408); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3330(\mathrm{OH}), 1590$ and $1605(\mathrm{C}=\mathrm{C}), 1439(\mathrm{P}$ $\mathrm{Ph})$ and $1152(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) 0.83(3 \mathrm{H}, \mathrm{t}, J$ $\left.7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.0-2.6\left[6 \mathrm{H}, \mathrm{m}, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right], 1.28(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{CH}_{3} \mathrm{CH}$ ), 1.73 ( 2 H , quintet, $J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ ), 1.9-2.4 (4 H, m, $\mathrm{PCHCH}_{2}$ and $\mathrm{SCH}_{2}$ ), $2.60\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{PhCH}_{2}\right), 2.65(1 \mathrm{H}$, dd, $J 10$ and $2, \mathrm{SCH}$ ), $3.13\left(1 \mathrm{H}, \mathrm{tt}, J_{\mathrm{HP}} 9, J_{\mathrm{HH}} 92\right.$ and $\left.2, \mathrm{PCH}\right), 4.10(1$ H , ddd, $J_{\mathrm{HP}} 23, J_{\mathrm{HH}} 10$ and $\left.2, \mathrm{PCHCH}\right), 4.14(1 \mathrm{H}, \mathrm{dq}, J 2$ and 6 , $\mathrm{MeCH}), 7.0-7.3\left(5 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right)$ and $7.3-8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$. Irradiation at $\delta 3.13$ simplified the signal at $\delta 4.14$ to $(1 \mathrm{H}, \mathrm{q}, J 6)$ and the signal at $\delta 4.10$ to ( 1 H , dd, $J 10$ and 23). Irradiation at $\delta$ 1.28 simplified the signal at $\delta 4.14$ to ( $1 \mathrm{H}, \mathrm{d}, J 2$ ); $m / z 506(0.5 \%$, $\mathbf{M}-\mathbf{H}_{2} \mathrm{O}$ ), 488 ( $1.5, \mathbf{M}-\mathbf{H}_{2} \mathrm{O}-\mathbf{H}_{2} \mathbf{O}$ ), 315 [35, $\mathbf{M}-$ $\left.\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCHCH}(\mathrm{OH}) \mathrm{Me}\right], 201\left(57, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 181 (100).

## (2RS,3SR,Z)-3-(3-Phenylpropylsulfanyl)dec-4-en-2-ol 46

Sodium hydride ( $80 \%$ dispersion in mineral oil; $30 \mathrm{mg}, 1 \mathrm{mmol}$ ) was added in one portion to a stirred solution of the $\beta$-hydroxy phosphine oxide $17(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in DMF $\left(4 \mathrm{~cm}^{3}\right)$ at room temperature under nitrogen. The resulting solution was heated at $75^{\circ} \mathrm{C}$ for 2 h to give a black solution with a precipitate which was then allowed to cool. The reaction was quenched by the careful dropwise addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (2 $\mathrm{cm}^{3}$ ) to the mixture followed by water ( $40 \mathrm{~cm}^{3}$ ). The resulting solution was extracted with ether ( $50 \mathrm{~cm}^{3}$ ). The extract was washed with water $\left(3 \times 40 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. This crude product was purified by $\mathrm{PLC}\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}-90 \%\right.$ hexane $)$ to give the allylic sulfide $46(10 \mathrm{mg}, 17 \%)$ as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-$ $80 \%$ hexane) 0.41 (Found: $\mathrm{M}^{+}, 306.2030 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OS}$ requires $M, 306.2017)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1660(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.88\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CHCH}_{2}\right), 1.21(3 \mathrm{H}, \mathrm{d}, J$ $\left.6.2, \mathrm{CH}_{3} \mathrm{CH}\right), 1.1-1.8\left[6 \mathrm{H}, \mathrm{m}, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right], 1.90(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.04\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.4-2.6(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.64(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and 11 , $\mathrm{SCH}), 3.81(1 \mathrm{H}, \mathrm{dq}, J 4.7$ and $6.2, \mathrm{CHOH}), 5.34(1 \mathrm{H}, \mathrm{tt}, J 11$ and $1.5, \mathrm{CH}=\mathrm{CHCH}), 5.65(1 \mathrm{H}, \mathrm{dt}, J 11$ and $7, \mathrm{CH}=\mathrm{CHCH})$ and $7.1-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. Irradiation of the signal at $\delta 3.64$ simplified
the signal at $\delta 3.81$ to $(1 \mathrm{H}, \mathrm{q}, J 6.2)$ and the signal at $\delta 5.34$ to $(1$ H, br d, $J 11$ ); $m / z 306$ ( $2 \%$ ), 262 ( 22 , M - MeCHO), 261 (38, $\mathrm{M}-\mathrm{MeCHOH}), 117(50), 118(48)$ and $92\left(100, \mathrm{C}_{7} \mathrm{H}_{7}\right)$.

## (2RS,3RS,Z)-3-(3-Phenylpropylsulfanyl)dec-4-en-2-ol 47

Sodium hydride ( $80 \%$ dispersion in mineral oil; $30 \mathrm{mg}, 1.0$ mmol ) was added in one portion to a stirred solution of the diol $39(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ in DMF ( $4 \mathrm{~cm}^{3}$ ) at room temperature under nitrogen after which the mixture was heated at $75^{\circ} \mathrm{C}$ for 2 h. After cooling, the reaction mixture was carefully quenched by the dropwise addition to it of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5$ $\mathrm{cm}^{3}$ ). It was then diluted with diethyl ether, washed with water $\left(4 \times 40 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this by PLC $\left(\mathrm{SiO}_{2}\right.$, EtOAc- $85 \%$ hexane) gave the allylic sulfide 47 ( $20 \mathrm{mg}, 30 \%$ ) as an oil, $\boldsymbol{R}_{\mathrm{F}}\left(\mathrm{EtOAc}-80 \%\right.$ hexane) 0.41 (Found: $\mathrm{M}^{+}$, 306.2007. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OS}$ requires $M, 306.2017$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450$ $(\mathrm{OH})$ and $1600(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ), $1.15\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3} \mathrm{CH}\right), 1.15-1.4[6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right], 1.85\left(2 \mathrm{H}, \mathrm{qn}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.9-2.05(2 \mathrm{H}$, br $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 2.46$ and $2.66(4 \mathrm{H}, 2 \times \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.42(1 \mathrm{H}$, dd, $J 10.5$ and $8.5, \mathrm{CHS}), 3.59(1 \mathrm{H}$, dq, $J 8.5$ and $6.5, \mathrm{CHOH}) 5.21(1 \mathrm{H}$, br t, $J 10, \mathrm{CHCH}=\mathrm{CH})$, $5.49(1 \mathrm{H}, \mathrm{dt}, J 10.5$ and $7, \mathrm{CHCH}=\mathrm{CH})$ and $7.1-7.35(5 \mathrm{H}, \mathrm{m}$, Ph); m/z 306 (7\%), 262 (60, M - MeCO), 261 (100, M $\mathrm{MeCHOH})$ and $152\left[60, \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\right]$.

Also obtained was (Z)-1-(3-phenylpropylsulfanyl)oct-2-ene $48(20 \mathrm{mg}, 40 \%)$ as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-80 \%$ hexane) 0.70 (Found: $\mathrm{M}^{+}$, 262.1772. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~S}$ requires $M, 262.1755$ ); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1600(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.0-1.4\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.91(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ ), $2.04\left(2 \mathrm{H}\right.$, br q, $J 7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$ ), 2.50 and 2.72 ( 4 $\left.\mathrm{H}, 2 \times \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.17\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{~S}\right), 5.44$ $\left(1 \mathrm{H}, \mathrm{dt}, J 10.5\right.$ and $\left.8, \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.54(1 \mathrm{H}, \mathrm{dt}, J 10.5$ and $\left.6, \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}\right)$ and $7.1-7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. Irradiation of the signal at $\delta 3.17$ simplified the signal at $\delta 5.44$ to $(1 \mathrm{H}, \mathrm{d}, J 10.5)$ and irradiation of the signal at $\delta 1.91$ simplified the signals at $\delta$ 2.50 and 2.72 to $2 \times(2 \mathrm{H}, \mathrm{s}) ; m / z 262(5 \%), 168(9), 152$ [16, $\left.\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}\right], 126$ (100), 118 (30, $\mathrm{PhCH}_{2} \mathrm{CHCH}_{2}$ ), 117 (27) and $91\left(45, \mathrm{C}_{7} \mathrm{H}_{7}\right)$.

## (2RS,3RS,E)-3-(3-Phenylpropylsulfanyl)dec-4-en-2-ol 49

Sodium hydride ( $80 \%$ dispersion in mineral oil; $30 \mathrm{mg}, 1.0$ mmol ) was added in one portion to a stirred solution of the diol $39(130 \mathrm{mg}, 0.35 \mathrm{mmol})$ in DMF ( $4 \mathrm{~cm}^{3}$ ) at room temperature under nitrogen. The resulting solution was heated at $60^{\circ} \mathrm{C}$ for 15 min before it was cooled and quenched by the dropwise addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$. The mixture was then diluted with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$, washed with water $\left(4 \times 50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this by PLC $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}-80 \%\right.$ hexane) gave the allylic sulfide 49 ( 58 mg , $76 \%$ ) as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-80 \%$ hexane) 0.41 (Found: $\mathrm{M}^{+}$, 306.2020. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OS}$ requires $M$, 306.2017); $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1606(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH} 2), 1.14\left(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH}_{3} \mathrm{CH}\right)$, $1.15-1.35\left[6 \mathrm{H}, \mathrm{m}, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right.$ ], $1.89(2 \mathrm{H}, \mathrm{qn}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.00\left(2 \mathrm{H}\right.$, br q, $\left.J 7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 2.0-2.5(2 \mathrm{H}$, br s, $\mathrm{CH}_{2} \mathrm{~S}$ ), 2.6-2.8 ( $2 \mathrm{H}, \mathrm{ABX}_{2} \mathrm{~m}, \mathrm{CH}_{2} \mathrm{Ph}$ ), $2.8-3.3(1 \mathrm{H}$, br s, CHS), $3.69(1 \mathrm{H}, \mathrm{dq}, J 8$ and $6, \mathrm{CHOH}), 5.30(1 \mathrm{H}, \mathrm{dd}, J 15$ and 9, $\mathrm{CH}=\mathrm{CHCH}_{2}$ ), $5.48\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15\right.$ and $\left.7, \mathrm{CH}=\mathrm{CHCH}_{2}\right)$ and 7.2-7.4 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ ). Addition of $\mathrm{D}_{2} \mathrm{O}$ caused the two broad singlets to become $\delta 2.45\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{~S}\right)$ and $3.04(1 \mathrm{H}$, dd, $J 9$ and $8, \mathrm{CHS}$ ); $m / z 306(2 \%)$, 262 ( 27 , M - MeCHO), 261 (33, $\mathrm{M}-\mathrm{MeCHOH}), 118(48), 117(48)$ and $91\left(100, \mathrm{C}_{7} \mathrm{H}_{7}\right)$.
(2RS,3SR)-4-Methyl-3-(3-phenylpropylsulfanyl)dec-4-en-2-ol 50 Sodium hydride ( $50 \%$ dispersion in mineral oil; $10 \mathrm{mg}, 0.21$
mmol) was added in one portion to a stirred solution of the alcohol $16(100 \mathrm{mg}, 0.185 \mathrm{mmol})$ in DMF ( $3 \mathrm{~cm}^{3}$ ) and the resulting solution was heated at $50^{\circ} \mathrm{C}$ for 25 min . Further sodium hydride ( 10 mg ) was then added to the mixture and stirring continued for 15 min at $50^{\circ} \mathrm{C}$. After cooling, the mixture was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$, diluted with water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(70 \mathrm{~cm}^{3}\right)$. The extract was washed with water $\left(3 \times 30 \mathrm{~cm}^{3}\right)$, dried ( $\mathrm{MgSO}_{4}$ ) and evaporated under reduced pressure to give an oil. TLC of this crude produce showed a complex mixture with major components at $R_{\mathrm{F}}(\mathrm{EtOAc}-75 \%$ hexane) 0.1, 0.43, 0.54 and 0.64. These components were separated by PLC (EtOAc$75 \%$ hexane) to give hexyldiphenylphosphine oxide ( 35 mg , $66 \%$ ) as an oil $R_{\mathrm{F}} 0.1$, and a minor product which was tentatively assigned as the allylic sulfide $50(6 \mathrm{mg}, 10 \%), R_{\mathrm{F}} 0.43$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{d}, J$ $\left.7, \mathrm{CH}_{3} \mathrm{CH}\right), 1.65(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{MeC}=\mathrm{C}), 1.1-2.2\left[10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right.$ and $\left.\mathrm{SCH}_{2}\right], 2.35$ and $2.65(4 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.26(1 \mathrm{H}$, br t, $J 6$, $\mathrm{C}=\mathrm{CH})$ and $6.95-7.2(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph})$.
( $\mathbf{2 S}, \mathbf{3 S}, 4 \boldsymbol{4}$ )-4-Diphenylphosphinoyl-2,3-epoxy-5-methylhexanoic acid 52
Water ( $12 \mathrm{~cm}^{3}$ ), sodium periodate ( $1.228 \mathrm{~g}, 5.74 \mathrm{mmol}, 4.2$ equiv.) and ruthenium(III) chloride ( $5 \mathrm{mg}, 1.5 \mathrm{~mol} \%$ ) were added to a stirred solution of the epoxy alcohol ${ }^{6}$ syn-1e $(453.6 \mathrm{mg}$, 1.37 mmol ) in a mixture of carbon tetrachloride ( $8 \mathrm{~cm}^{3}$ ) and acetonitrile $\left(8 \mathrm{~cm}^{3}\right)$. The brown, two-phase mixture was stirred vigorously for 4 h after which it was diluted with dichloromethane ( $100 \mathrm{~cm}^{3}$ ) and water ( $50 \mathrm{~cm}^{3}$ ) and then basified with dilute aqueous sodium hydroxide ( $2 \mathrm{~mol} \mathrm{dm}^{-3} ; 5$ $\mathrm{cm}^{3}$ ). The layers were separated, and the organic layer was washed with water. The combined aqueous fractions were acidified with concentrated hydrochloric acid and extracted into dichloromethane ( $\times 3$ ). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to yield the acid $52(422.4 \mathrm{mg}, 90 \%)$ as a foam, $[\alpha]_{\mathrm{D}}^{25}-176.3$ ( $c 0.40$ in $\mathrm{CHCl}_{3} ; 65 \%$ ee) (Found: $\mathrm{M}^{+}$, 344.1203. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ requires $M, 344.1277$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}-4 \%$ $\mathrm{MeOH}-0.5 \% \mathrm{AcOH}) 0.36 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400-2500(\mathrm{OH})$, $1720(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.54\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.56(1 \mathrm{H}$, ddd, $J 7.0,5.8$ and $1.6, \mathrm{PCHCHO}), 3.36(1 \mathrm{H}$, fine m, $\mathrm{OCHCO}_{2} \mathrm{H}$ ), $2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.05(1 \mathrm{H}$, ddd, $J 9.1,6.3$ and 2.7, PCH), $1.07\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $1.04(3 \mathrm{H}$, d, J 6.6, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.8^{-}\left(\mathrm{CO}_{2} \mathrm{H}\right)$, $133-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), \quad 53.5^{+}$(PCHCHO), $53.4^{+} \quad\left({ }^{3} J_{\mathrm{PC}} \quad 15.3\right.$, $\mathrm{OCHCO}_{2} \mathrm{H}$ ), $46.7^{+}\left({ }^{1} \mathrm{JPC}_{\mathrm{PC}} 66.4, \mathrm{PCH}\right), 27.1^{+}\left(\mathrm{CHMe}_{2}\right), 23.9^{+}$ ( ${ }^{3} J_{\mathrm{PC}}$ 12.1, $\mathrm{CHMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $18.9^{+}\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 344$ ( $3.5 \%, \mathrm{M}^{+}$), 343 ( $3.5, \mathrm{M}-\mathrm{H}$ ), 257 ( $42, \mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{4} \mathrm{O}$ ), 219 ( $33, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}$ ), 202 ( $72, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2S,3S,4R)-4-Diphenylphosphinoyl-2,3-epoxy-5-methylhexanoic acid 55

In the same way, the epoxy alcohol ${ }^{6}$ anti-1e $(68.7 \mathrm{mg}, 0.208$ $\mathrm{mmol})$ gave the acid $55(65.1 \mathrm{mg}, 91 \%)$ as needles, $\mathrm{mp}>210^{\circ} \mathrm{C}$ (from EtOAc-MeOH), $[\alpha]_{\mathrm{D}}^{25}-31.7$ ( $c 0.63$ in $\mathrm{CHCl}_{3} ; 85 \%$ ee) (Found: C, 66.15; H, 6.1; P, 9.0\%; M ${ }^{+}$, 344.1147. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 66.26 ; \mathrm{H}, 6.15 ; \mathrm{P}, 8.99 \% ; M, 344.1178) ; R_{\mathrm{F}}(\mathrm{EtOAc}-$ $4 \%$ MeOH- $0.5 \%$ AcOH) 0.36; $\nu_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} \quad 3100-2400$ $(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}), 1460(\mathrm{PPh})$ and $1175(\mathrm{P}=\mathrm{O}) \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ ) $10.8\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.76$ $(1 \mathrm{H}$, dd, $J 8.5$ and $1.8, \mathrm{PCHCHO}), 2.50(1 \mathrm{H}, \mathrm{d}, J 1.8$, $\left.\mathrm{OCHCO}_{2} \mathrm{H}\right), 2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.05(1 \mathrm{H}, \mathrm{dt}, J 2.5$ and 8.5, PCH $), 1.23\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $1.15(3 \mathrm{H}, \mathrm{d}, J$ 7.0, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.5^{-}\left(\mathrm{CO}_{2} \mathrm{H}\right), 133-$ $128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 53.3^{+}\left({ }^{2} J_{\mathrm{PC}} 3.6, \mathrm{PCHCHO}\right), 51.1^{+}\left(\mathrm{OCHCO}_{2} \mathrm{H}\right)$, $47.6^{+}\left({ }^{1} J_{\mathrm{PC}} 64.9, \mathrm{PCH}\right), 28.1^{+}\left(\mathrm{CHMe}_{2}\right), 23.0^{+}\left({ }^{3} J_{\mathrm{PC}}\right.$ 14.6, CH $M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $18.2^{+}\left({ }^{3} J_{\mathrm{PC}} 1.5, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$ ); $m / z 344$ ( $3.5 \%$, $\mathrm{M}^{+}$), 257 (29, $\mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{4} \mathrm{O}$ ), 219 ( $6, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$ ), 202 (70, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## ( $2 R, 3 R, 4 R$ )-4-Cyclohexyl-4-diphenylphosphinoyl-2,3-epoxy-

 butanoic acid 58In the same way, the epoxy alcohol ${ }^{6}$ syn- 1 h ( $273.1 \mathrm{mg}, 0.737$ mmol ) gave the acid $58(279.4 \mathrm{mg}, 99 \%)$ as a powder, mp $>200^{\circ} \mathrm{C}$ (decomp.) (from EtOAc-MeOH) (Found: M $\mathrm{CO}_{2}, 340.1575 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{CO}_{2}, 340.1592$ ); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400-2500(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.44\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$, 7.9-7.4 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), $3.57(1 \mathrm{H}$, dd, $J 7.6$ and 6.6 , $\mathrm{PCHCHO}), 3.33\left(1 \mathrm{H}\right.$, fine $\left.\mathrm{m}, \mathrm{OCHCO}_{2} \mathrm{H}\right)$ and 2.2-1.0 $[12 \mathrm{H}$, $\mathrm{m}, \mathrm{PCH}$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.8^{-}$ $\left(\mathrm{CO}_{2} \mathrm{H}\right), 133-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 53.9^{+}(\mathrm{PCHCHO}), 53.6^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}\right.$ $11.0, \mathrm{OCHCO}_{2} \mathrm{H}$ ), $47.1^{+}$( $\left.{ }^{1} J_{\mathrm{PC}} 65.9, \mathrm{PCH}\right), 37.4^{+}\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right]$, $34.1^{-}, 29.7^{-}, 26.8^{-}, 26.6^{-}$and $25.7^{-}\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; m / z 340$ ( $95 \%$, $\mathrm{M}-\mathrm{CO}_{2}$ ), $257\left(75, \mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{4} \mathrm{O}\right), 219\left(38, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}\right)$, $202\left(95, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $77(100, \mathrm{Ph})$.

## ( $2 R, 3 R, 4 S$ )-4-Cyclohexyl-4-diphenylphosphinoyl-2,3-epoxybutanoic acid 61

In the same way, the epoxy alcohol ${ }^{6}$ anti-1h $(615.7 \mathrm{mg}, 1.66$ mmol ) gave the acid $61(491.3 \mathrm{mg}, 77 \%)$ as prisms, $\mathrm{mp}>220^{\circ} \mathrm{C}$ (decomp.) (from EtOAc), $[\alpha]_{D}^{25}-108.6$ ( $c 0.42$ in $\mathrm{CHCl}_{3} ; 63 \%$ ee) (Found: C, 68.5; H, 6.45; P, $7.9 \%$; M + H, 385.1575 . $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 68.74 ; \mathrm{H}, 6.55 ; \mathrm{P}, 8.06 \% ; \mathrm{M}+\mathrm{H}$, 385.1569); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.0 ; v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3100-2400(\mathrm{OH})$, $1720(\mathrm{C}=\mathrm{O}), 1430(\mathrm{PPh})$ and $1125(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $10.5\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.9-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.74(1 \mathrm{H}, \mathrm{dd}$, $J 8.7$ and $1.4, \mathrm{PCHCHO}), 2.49\left(1 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{OCHCO}_{2} \mathrm{H}\right), 1.97$ $(1 \mathrm{H}, \mathrm{dt}, J 2.3$ and $8.6, \mathrm{PCH})$ and $2.1-0.8\left[11 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right]$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.8^{-}\left(\mathrm{CO}_{2} \mathrm{H}\right), 133-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 54.2^{+}$ $(\mathrm{PCHCHO}), 52.0^{+}\left(\mathrm{OCHCO}_{2} \mathrm{H}\right), 48.2^{+}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 67.0, \mathrm{PCH}\right)$ and $39-26\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; m / z(+\mathrm{FAB}) 385(100 \%, \mathrm{M}+\mathrm{H})$ and 257 (28, $\mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{4} \mathrm{O}$ ).
(2R,3S,4S)-2-Benzylamino-4-diphenylphosphinoyl-3-hydroxy-5methylhexanoic acid 53
The epoxy acid 52 ( $422.4 \mathrm{mg}, 1.227 \mathrm{mmol}$ ) dissolved in a mixture of water ( $2.5 \mathrm{~cm}^{3}$ ) and benzylamine ( $2.5 \mathrm{~cm}^{3}$ ) was heated under reflux for 24 h . The mixture was then diluted with water ( $30 \mathrm{~cm}^{3}$ ), washed with diethyl ether ( $\times 2$ ) and acidified with concentrated hydrochloric acid. The amino acid 53 (163.7 $\mathrm{mg}, 47 \%$ ), a powder, was filtered off; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ 7.9-7.4 ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph ), $4.75(1 \mathrm{H}, \mathrm{dd}, J 21.0$ and 4.4 , $\mathrm{CHOH}), 4.45\left(1 \mathrm{H}, \mathrm{d}, J 13.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 4.33(1 \mathrm{H}, \mathrm{d}, J 13.1$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.75(1 \mathrm{H}, \mathrm{d}, J 4.6, \mathrm{CHN}), 3.04(1 \mathrm{H}, \mathrm{d}, J 18.4$, PCH $), 2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{C}_{2}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.54\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$, characterised as the methyl ester 64.

## (2R,3S,4R)-2-Benzylamino-4-diphenylphosphinoyl-3-hydroxy-5methylhexanoic acid 56

In the same way, the epoxy acid $53(92 \mathrm{mg}, 0.267 \mathrm{mmol})$ gave the amino acid $56(92.9 \mathrm{mg}, 77 \%)$, which was characterised as the methyl ester 65.

## ( $2 R, 3 S, 4 R$ )-2-Benzylamino-4-diphenylphosphinoyl-3-hydroxybutanoic acid 59

In the same way, the epoxy acid $58(74.75 \mathrm{mg}, 0.194 \mathrm{mmol})$ gave the amino acid $59(38.2 \mathrm{mg}, 40 \%)$, which was characterised as the methyl ester 66.

## (2R,3S,4SR)-2-Benzylamino-4-diphenylphosphinoyl-3-hydroxy-

 butanoic acid 62In the same way, the epoxy acid $61(115.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ gave the amino acid $62(74.5 \mathrm{mg}, 51 \%) ; m / z(+$ FAB $) 434(85 \%), 219$ $\left(36, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}\right), 202\left(35, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$, which was characterised as the methyl ester 67.

Methyl (2R,3S,4S)-2-benzylamino-4-diphenylphosphinoyl-3-hydroxy-5-methylhexanoate 64
An ethereal solution of diazomethane (prepared by the method of Vogel ${ }^{34}$ ) was added to a solution of the epoxy acid 53 (45.0 $\mathrm{mg}, 0.100 \mathrm{mmol}$ ) in methanol ( $8 \mathrm{~cm}^{3}$ ) until a yellow colour persisted. After 10 min , the solution was carefully quenched with saturated aqueous sodium hydrogen carbonate, diluted with water and extracted into dichloromethane $(\times 3)$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield the ester $64(48.0 \mathrm{mg}, 103 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}$ +54.4 (c 0.48 in $\mathrm{CHCl}_{3} ; 65 \%$ ee) (Found: $\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$, 406.1932. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{P}$ requires $M-\mathrm{CO}_{2} \mathrm{Me}$, 406.1936); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.56 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3600-3200(\mathrm{OH}$ and NH$)$, $1730(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PPh})$ and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $8.0-7.2\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 4.08(1 \mathrm{H}, \mathrm{dt}, J 23.8$ and 8.8, $\mathrm{CHOH}), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.30\left(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right)$, $3.18(1 \mathrm{H}, \mathrm{d} \times$ fine $\mathrm{m}, J 10.2, \mathrm{PCH}), 2.96(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{CHN})$, $2.93\left(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 2.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}_{2}\right), 1.09$ ( $3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $1.02(3 \mathrm{H}, \mathrm{d}, J 6.9$, $\left.\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.7^{-}\left(\mathrm{CO}_{2}\right), 140-127$ $\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 72.7^{+}\left({ }^{2} J_{\mathrm{PC}} 5.2, \mathrm{CHOH}\right), 65.8^{+}(\mathrm{CHN})$, $51.68^{+}$( OMe ), $51.65^{-}\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 41.6^{+}\left({ }^{1} J_{\mathrm{PC}} 65.8, \mathrm{PCH}\right)$, $28.0^{+}\left(\mathrm{CHMe}_{2}\right), 22.7^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 14.0, \mathrm{CHMe} \mathrm{Me}_{\mathrm{B}}\right)$ and $19.2^{+}$ $\left(\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me} e_{\mathrm{B}}\right) ; m / z 406\left(1 \%, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right), 287$ (92, $\mathrm{M}-$ $\mathrm{PhCH}_{2} \mathrm{NHCHCO}_{2} \mathrm{Me}$ ), 243 (28, $\left.\mathrm{Ph}_{2} \mathrm{POCHCHO}\right), 202$ (26, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right), 201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $91\left(75, \mathrm{PhCH}_{2}\right)$.

Methyl (2R,3S,4R)-2-benzylamino-4-diphenylphosphinoyl-3-hydroxy-5-methylhexanoate 65
In the same way, the amino acid $56(19.3 \mathrm{mg}, 0.0427 \mathrm{mmol})$ gave the ester $65(20.5 \mathrm{mg}, 102 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+14.8(c 0.82$ in $\mathrm{CHCl}_{3} ; 85 \%$ ee) (Found: $\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$, 406.1907. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{P}$ requires $M-\mathrm{CO}_{2} \mathrm{Me}, 406.1936$ ); $R_{\mathrm{F}}(\mathrm{EtOAc})$ $0.54 ; v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3500-3200(\mathrm{OH}$ and NH$), 1720(\mathrm{C}=\mathrm{O})$, $1435(\mathrm{PPh})$ and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.2(15$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 4.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.08(1 \mathrm{H}, \mathrm{t}, J 10.3$, $\mathrm{CHOH}), 3.74\left(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.57\left(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.44(1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{CHN}), 3.03$ $(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{PCH}), 2.18(1 \mathrm{H}$, dd $\times$ septet, $J 14.0,1.4$ and 7.0 , CHMe 2 ), $1.12\left(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}}\right)$ and $0.83(3 \mathrm{H}, \mathrm{d}, J 7.2$, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.6^{-}\left(\mathrm{CO}_{2}\right), 139-127$ $\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 73.5^{+}(\mathrm{CHOH}), 62.6^{+}\left({ }^{3} J_{\mathrm{PC}} 11.6, \mathrm{CHN}\right), 52.0^{+}$ ( OMe and $\mathrm{NCH}_{2} \mathrm{Ph}$ ), $42.8^{+}\left({ }^{1} J_{\mathrm{PC}} 68.5, \mathrm{PCH}\right), 25.7^{+}\left(\mathrm{CHMe}_{2}\right)$, $24.4^{+}\left(\mathrm{CHMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $22.2^{+}\left({ }^{3} J_{\mathrm{PC}} 8.2, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 406$ ( $2 \%$, $\mathbf{M}-\mathrm{CO}_{2} \mathrm{Me}$ ), 376 ( $10, \mathbf{M}-\mathrm{PHCH}_{2}$ ), 287 ( $81, \mathbf{M}-$ $\mathrm{PhCH}_{2} \mathrm{NHCHCO}_{2} \mathrm{Me}$ ), 243 (24, $\left.\mathrm{Ph}_{2} \mathrm{POCHCHO}\right), 202$ (30, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right), 201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $91\left(88, \mathrm{PhCH}_{2}\right)$.

Methyl (2R,3S,4R)-2-benzylamino-4-diphenylphosphinoyl-3-hydroxy-5-methylhexanoate 66
In the same way, the amino acid $58(7.9 \mathrm{mg}, 0.0161 \mathrm{mmol})$ gave the ester $66(8.3 \mathrm{mg}, 102 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}-40.7(c 0.08 \mathrm{in}$ $\mathrm{CHCl}_{3} ; 63 \%$ ee); $\boldsymbol{R}_{\mathrm{F}}(\mathrm{EtOAc}) 0.50 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.1$ ( $15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph ), $5.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.02(1 \mathrm{H}, \mathrm{dd}, J$ 25.1 and $10.2, \mathrm{CHOH}), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.26(1 \mathrm{H}, \mathrm{d}, J 13.0$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.11(1 \mathrm{H}, \mathrm{d} \times$ fine $\mathrm{m}, J 10.6, \mathrm{PCH}), 2.95(1 \mathrm{H}, \mathrm{d}, J$ $10.3, \mathrm{CHN}), 2.88\left(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right)$ and $2.0-0.6[11$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 178.7^{-}\left(\mathrm{CO}_{2}\right), 140-$ $127\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 73.5^{+}\left({ }^{2} J_{\mathrm{PC}} 5.2, \mathrm{CHOH}\right), 65.8^{+}(\mathrm{CHN})$, $51.68^{+}(\mathrm{OMe}), 51.66^{-}\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 42.2^{+}\left({ }^{1} J_{\mathrm{PC}} 72, \mathrm{PCH}\right), 38.7^{+}$ $\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right], 32.9^{-}\left({ }^{3} J_{\mathrm{PC}} 13.0\right), 29.8^{-}, 27.0^{-}, 26.8^{-}$and $25.8^{-}$ $\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right]$.

## Methyl (2R,3S,4S)-2-benzylamino-4-diphenylphosphinoyl-3hydroxybutanoate 67

In the same way, the amino acid $62(9.2 \mathrm{mg}, 0.0187 \mathrm{mmol})$ gave the ester $67(9.4 \mathrm{mg}, 100 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+14.4$ (c 0.94 in $\mathrm{CDCl}_{3} ; 75 \%$ ee $) ; \boldsymbol{R}_{\mathrm{F}}(\mathrm{EtOAc}) 0.48 ; \delta_{\mathbf{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.2$
$\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 4.3(1 \mathrm{H}$, br s, NH$), 4.06(1 \mathrm{H}, \mathrm{t}, J$ $10.4, \mathrm{CHOH}), 3.75\left(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 3.72(3 \mathrm{H}, \mathrm{s}$, OMe), $3.54\left(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.44(1 \mathrm{H}, \mathrm{d}, J 9.8$, CHN), $2.94(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{PCH})$ and $2.1-0.6[11 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.6^{-}\left(\mathrm{CO}_{2} \mathrm{H}\right), 139-127$ $\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 73.6^{+}(\mathrm{CHOH}), 62.4^{+}\left({ }^{3} J_{\mathrm{PC}} 12.0, \mathrm{CHN}\right), 52.0^{+}$ (OMe), 51.9- $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 43.1^{+}\left({ }^{1} J_{\mathrm{PC}} 68.3, \mathrm{PCH}\right), 36.5^{+}$ $\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right], 34.5^{-}, 32.7^{-}\left({ }^{3} J_{\mathrm{PC}} 8.6\right), 27.4^{-}, 27.2^{-}$and $25.9^{-}$ $\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right]$.

## Methyl ( $\boldsymbol{R}, \boldsymbol{E}$ )-2-benzylamino-5-methylhex-3-enoate 54

Sodium hydride ( $60 \%$ suspension; $13 \mathrm{mg}, 0.325 \mathrm{mmol}, 4$ equiv.) was added to a stirred suspension of the amino acid $53(34.4 \mathrm{mg}$, 0.076 mmol ) in dry DMF ( $2 \mathrm{~cm}^{3}$ ) under nitrogen and the mixture was heated to $60^{\circ} \mathrm{C}$. It rapidly cleared and after 20 min gave a thick white precipitate. After a total of 30 min at $60^{\circ} \mathrm{C}$, the mixture was allowed to cool to room temperature, after which it was carefully quenched with a minimum amount (5 drops) of saturated aqueous ammonium chloride and diluted with ethanol $\left(5 \mathrm{~cm}^{3}\right)$. An ethereal solution of diazomethane (prepared according to Vogel ${ }^{34}$ ) was then added to the mixture until a yellow colour persisted. After 10 min excess of diazomethane present in the mixture was carefully quenched by the addition of saturated aqueous sodium hydrogen carbonate. After dilution with water, the mixture was extracted with ether $(\times 3)$ and the combined extracts were washed with water $(\times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by PLC, eluting with hexane-EtOAc (4:1), gave the amino ester $54(13.15 \mathrm{mg}, 70 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}$ -30.4 ( $c 0.57$ in $\mathrm{CDCl}_{3}$ ) (Found: $\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}, 188.1434$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M-\mathrm{CO}_{2} \mathrm{Me}, 188.1439$ ); $R_{\mathrm{F}}$ [hexaneEtOAc (4:1)] 0.27; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.4-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.70(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 6.4, $\mathrm{CH}=\mathrm{CHCHMe} 2$ ), 5.37 ( 1 H , ddd, $J 15.5,7.3$ and 1.2, $\mathrm{NCHCH}=\mathrm{CH}), 3.81(1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CHN}), 3.73(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.30(1 \mathrm{H} \text {, octet, } J 6.7, \mathrm{CHMe})_{2}$ ), 0.989 ( $3 \mathrm{H}, \mathrm{d}, J$ 6.7, СН $\mathrm{Ce}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$ ) and $0.984(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.8^{-}\left(\mathrm{CO}_{2}\right), 142.3^{+}$ $(\mathrm{CH}=\mathrm{CHCHN}), 139.4^{-}$(Ph ipso), $128.4^{+}, 128.3^{+}(\mathrm{Ph}$ ortho and meta), $127.1^{+}$(Ph para), $123.1^{+}(\mathrm{NCHCH}=\mathrm{CH}), 62.6^{+}(\mathrm{CHN})$, $52.0^{+}(\mathrm{OMe}), \quad 51.2^{-}\left(\mathrm{CH}_{2} \mathrm{~N}\right), \quad 30.9^{+}\left(\mathrm{CHMe}_{2}\right), 22.08^{+}$ $\left(\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $22.06^{+}\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 188(100 \%, \mathrm{M}-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$ and $91\left(92, \mathrm{PhCH}_{2}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in the presence of 1-(9-anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ indicated an enantiomeric excess of $63 \%$.

Methyl (S,E)-2-benzylamino-4-cyclohexylbut-3-enoate 60
In the same way, the amino acid $59(38.2 \mathrm{mg}, 0.0777 \mathrm{mmol})$ gave, after purification by PLC, eluting with $\mathrm{Et}_{2} \mathrm{O}$-hexane (3:2), the amino ester $60(11.4 \mathrm{mg}, 51 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+20.8$ (c 0.39 in $\mathrm{CDCl}_{3} ; 63 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}, 288.1977$. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 288.1963$ ); $R_{\mathrm{F}}\left[\mathrm{Et}_{2} \mathrm{O}\right.$-hexane (3:2)] $0.48 ; \quad v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.25-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.62(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and 6.6 , $\mathrm{NCHCH}=\mathrm{CHCH}), 5.32(1 \mathrm{H}$, dd, $J 15.5$ and 7.4, NCH$\mathrm{CH}=\mathrm{CHCH}), 3.75(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{CHN}), 3.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{Ph}\right)$, $3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $2.0-0.9\left[11 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; m / z(+$ FAB) $288(100 \%, \mathbf{M}+\mathrm{H})$ and $136\left(100, \mathrm{M}-\mathrm{H}-\mathrm{CO}_{2} \mathrm{Me}-\right.$ $\mathrm{PhCH}_{2}$ ).

## Methyl ( $R, Z$ )-2-benzylamino-5-methylhex-3-enoate 57

Powdered potassium hydroxide $(85 \% ; 15 \mathrm{mg}, 0.25 \mathrm{mmol}, 7$ equiv.) was added to a stirred suspension of the amino acid 56 $(15.6 \mathrm{mg}, 0.0346 \mathrm{mmol})$ in dry DMSO ( $2 \mathrm{~cm}^{3}$ ) under nitrogen and the mixture was heated to $60^{\circ} \mathrm{C}$. It rapidly cleared and after 5 h was allowed to cool to room temperature. At this point it was carefully quenched with a minimum amount ( 5 drops) of saturated aqueous ammonium chloride, and diluted with
ethanol ( $5 \mathrm{~cm}^{3}$ ). An ethereal solution of diazomethane (prepared according to the method of Vogel ${ }^{34}$ ) was added to the mixture until a yellow colour persisted. After 10 min , the excess of diazomethane present in the mixture was carefully quenched by the addition of saturated aqueous sodium hydrogen carbonate. After dilution with water the mixture was extracted with ether $(\times 3)$ and the combined extracts were washed with water $(\times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by PLC, eluting with [hexane-EtOAc (4:1)] gave the amino ester 57 ( 5.85 mg , $68 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}+44.6$ (c 0.24 in $\mathrm{CDCl}_{3} ; 65 \%$ ) (Found: $\mathrm{M}+\mathrm{H}, 248.1667 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{M}+\mathrm{H}, 248.1650$ ); $R_{\mathrm{F}}$ [hexane-EtOAc (4:1)] 0.24; $v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.4-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.48(1 \mathrm{H}, \mathrm{t}, J 10.6$, $\mathrm{CH}=\mathrm{CHCHMe} 2), 5.15(1 \mathrm{H}, \mathrm{t}, J 10.2, \mathrm{NCHCH}=\mathrm{CH}), 4.15(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J} 9.1, \mathrm{CHN}), 3.74\left(2 \mathrm{H}, \mathrm{AB} \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $2.57(1 \mathrm{H}, \mathrm{d} \times$ septet, $J 9.6$ and $6.6, \mathrm{CHMe} 2), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\left.\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)($ no APT $) 173.8\left(\mathrm{CO}_{2}\right), 142.7(\mathrm{CH}=C \mathrm{HCHN}), 139.5(\mathrm{Ph}$ ipso), 128.4, 128.3 ( Ph ortho and meta), 127.2 ( Ph para), $123.7^{+}$ $(\mathrm{NCHCH}=\mathrm{CH}), 57.9(\mathrm{CHN}), 52.2(\mathrm{OMe}), 51.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 29.5$ $\left(\mathrm{CHMe}_{2}\right), 27.4\left(\mathrm{CHM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $21.9\left(\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z(+$ FAB) $248(100 \%, M+\mathrm{H})$ and $188\left(75, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in the presence of 1-(9-anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ indicated an enantiomeric excess of 60-70\%.

## Methyl ( $S, Z$ )-2-benzylamino-4-cyclohexylbut-3-enoate 63

In the same way, the amino acid $62(46.8 \mathrm{mg}, 0.095 \mathrm{mmol})$ gave, after purification by PLC, eluting with $\mathrm{Et}_{2} \mathrm{O}$-hexane ( $3: 2$ ), the amino ester $63(10.5 \mathrm{mg}, 38 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+50.2(c 1.05 \mathrm{in}$ $\mathrm{CDCl}_{3} ; 75 \%$ ee) (Found: $\mathrm{M}+\mathrm{H}, 288.1957 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 288.1963$ ); $\boldsymbol{R}_{\mathrm{F}}\left[\mathrm{Et}_{2} \mathrm{O}\right.$-hexane (3:2)] 0.48 ; $v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.4-7.2$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.49(1 \mathrm{H}, \mathrm{t}, J 10.2, \mathrm{NCHCH}=\mathrm{CHCH}), 5.17(1 \mathrm{H}, \mathrm{t}, J$ $10.1, \mathrm{NCHCH}=\mathrm{CHCH}), 4.14(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{CHN}), 3.74(2 \mathrm{H}$, $\left.\mathrm{AB} \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $2.0-0.9[11 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.7^{-}\left(\mathrm{CO}_{2}\right), 141.4^{+}$ ( $\mathrm{CH}=$ CHCHN), $139.3^{-}$( Ph ipso), $128.4^{+}, 128.3^{+}$( Ph ortho and meta $), 127.2^{+}(\mathrm{Ph}$ para $), 123.8^{+}(\mathrm{NCHCH}=\mathrm{CH}), 57.7^{+}(\mathrm{CHN})$, $52.1^{+}(\mathrm{OMe}), 51.0^{-}\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.0^{+}\left[\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{5}-\right], 33.0^{-}$, $32.8^{-}, 25.9^{-}, 25.7^{-}$and $25.6^{-}\left[\left(\mathrm{CH}_{2}\right)_{5}\right] ; m / z(+\mathrm{FAB}) 288$ $(100 \%, \mathrm{M}+\mathrm{H})$ and 228 (20, $\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)$.

## Attempted Horner-Wittig elimination of the ester 64

A mixture of sodium hydride ( $60 \%$ suspension; $12 \mathrm{mg}, 3 \mathrm{mmol}$, 2.8 equiv.) and the amino ester $64(50.7 \mathrm{mg}, 0.109 \mathrm{mmol})$ dissolved in dry DMF ( 2 cm ) was heated under nitrogen at $60^{\circ} \mathrm{C}$ for 90 min . After the work-up procedure described for compound 54, purification of the product by PLC, eluting with hexane-EtOAc (2:1), gave 2-diphenylphosphinoyl-3-methylbutanal 68 ( $7 \mathrm{mg}, 22 \%$ ) as an oil (Found: $\mathrm{M}^{+}, 286.1146$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $M, 286.1122$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.45 ; v_{\max }-$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PPh})$ and $1165(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.69(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{CHO}), 7.9-7.2(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 3.24(1 \mathrm{H}, \mathrm{dt}, J 10.1$ and $5.5, \mathrm{PCH}), 2.54(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}$ ), $1.19\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $1.00(3 \mathrm{H}, \mathrm{d}, J$ 6.9, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 286\left(3.5 \%, \mathrm{M}^{+}\right), 271(13, \mathrm{M}-\mathrm{Me}), 258$ (11, M - CO), $243\left(74, \mathrm{Ph}_{2} \mathrm{POC}_{3} \mathrm{H}_{7}\right), 202\left(42, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

## Attempted Payne rearrangement-nucleophilic ring-opening of the epoxy alcohol 69

A solution of 1,1 -dimethylethanethiol $\left(0.05 \mathrm{~cm}^{3}, 0.444 \mathrm{mmol}\right.$, 1.3 equiv.) in tert-butyl alcohol $\left(0.5 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 50 min to a vigorously stirred solution of the epoxy alcohol $69(100 \mathrm{mg}, 0.331 \mathrm{mmol})$ in a mixture of 0.5 mol $\mathrm{dm}^{-3}$ aqueous sodium hydroxide $\left(1.5 \mathrm{~cm}^{3}\right)$ and tert-butyl
alcohol $\left(1.5 \mathrm{~cm}^{3}\right)$ at $72^{\circ} \mathrm{C}$ under nitrogen. Near the end of the addition, the cloudy reaction mixture cleared. After the mixture had cooled to room temperature, saturated aqueous ammonium chloride ( $5 \mathrm{~cm}^{3}$ ) was added to it followed by sufficient water to clear the aqueous layer. The layers were separated, and the aqueous layer was extracted with dichloromethane $(5 \times 4$ $\mathrm{cm}^{3}$ ). The combined organic fractions were washed with saturated aqueous ammonium chloride, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a crude yellow oil ( 144 mg ). The ${ }^{1} \mathrm{H}$ NMR spectrum of this crude product showed it to contain $52 \%$ of the ( $E$ )-vinyl phosphine oxide $72,19 \%$ of the $(Z)$-vinyl phosphine oxide 73 , and $17 \%$ of the allylic phosphine oxide 74 (by integration of distinctive signals relative to the $\mathrm{Ph}_{2} \mathrm{PO} 10 \mathrm{H} \mathrm{m}$ ), plus some 1,1-dimethylethanethiol and tert-butyl alcohol. Assignments were made tentatively from the ${ }^{1} H$ NMR spectrum of the crude reaction mixture and by comparison with the spectra of the pure $E$ - and $Z$-vinyl phosphine oxides obtained in other experiments:
( $R, E$ )-4-Diphenylphosphinoyl-3-methylbut-3-ene-1,2-diol 72 had $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.05 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.3(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.38(1 \mathrm{H}, \mathrm{d}, J 25.1, \mathrm{PCH}), 4.18(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and 4.5 , $\mathrm{CHOH}), 3.78\left(1 \mathrm{H}\right.$, dd, $J 11.3$ and 4.1, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.59(1$ H , dd, $J 5.8$ and $\left.11.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right)$ and $1.90(3 \mathrm{H}, \mathrm{d}, J 1.8$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 162.6^{-}(\mathrm{CMe}), 135-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, $117.2^{+}\left({ }^{1} J_{\mathrm{PC}} 100.5, \mathrm{PC}\right), 77.0^{+}(\mathrm{CHOH}), 64.8^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$ and $17.7^{+}(\mathrm{Me})$. Irradiation of the signal at $\delta 6.38$ gave no NOE at $\delta 1.90$.
( $R, Z$ )-4-Diphenylphosphinoyl-3-methylbut-3-ene-1,2-diol 73 had $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.13 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.3(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.96(1 \mathrm{H}, \mathrm{d}, J 23.8, \mathrm{PCH}), 4.53(1 \mathrm{H}, \mathrm{t}, J 5.3$, $\mathrm{CHOH}), 3.75\left(2 \mathrm{H}, \mathrm{ABX} \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 163.0^{-}(\mathrm{CMe}), 135-128 \quad\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, $120.2^{+}\left({ }^{1} J_{\mathrm{PC}} 102.5, \mathrm{PC}\right), 75.3^{+}(\mathrm{CHOH}), 65.4^{-}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$ and $25.0^{+}$(Me). Irradiation of the signal at $\delta 5.96$ gave a NOE at $\delta 2.06$.

Signals due to the allylic phosphine oxide 74: $\delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.8-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $4.53\left(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.27(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.35(1 \mathrm{H}, \mathrm{t}$, $\left.J 14.5, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and $3.23\left(1 \mathrm{H}, \mathrm{t}, J 14.5, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$.

## (2S,3R)-4-Diphenylphosphinoyl-2,3-epoxy-3-methylbutyl methanesulfonate 75

Methanesulfonyl chloride ( $0.38 \mathrm{~cm}^{3}, 4.8 \mathrm{mmol}, 2$ equiv.) and triethylamine ( $0.51 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}, 1.5$ equiv.) were added dropwise to a stirred solution of the epoxy alcohol ${ }^{6} 69$ (734.4 $\mathrm{mg}, 2.432 \mathrm{mmol}$ ) in dry dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. After 15 min , the reaction mixture was poured into dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ and washed with water $(2 \times 20$ $\mathrm{cm}^{3}$ ). The aqueous layer was extracted with dichloromethane, and the combined organic fractions were washed with brine ( 20 $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification of the crude product by flash chromatography, eluting with EtOAc, gave the epoxy mesylate 75 ( $861.3 \mathrm{mg}, 93 \%$ ) as needles, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ ), $[\alpha]_{\mathrm{D}}^{25}-25.9$ (c 1.47 in $\mathrm{CHCl}_{3} ; 97 \%$ ee) (Found: $\mathrm{C}, 56.7 ; \mathrm{H}, 5.7 ; \mathrm{P}, 8.3 \% ; \mathrm{M}-\mathrm{SO}_{2} \mathrm{Me}, 301.0992$. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PS}$ requires C, $56.8 ; \mathrm{H}, 5.56 ; \mathrm{P}, 8.14 \% ; M-\mathrm{SO}_{2} \mathrm{Me}$, $301.0994) ; \quad R_{\mathrm{F}}(\mathrm{EtOAc}) 0.21 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1440(\mathrm{PPh})$, $1350(\mathrm{~S}=\mathrm{O})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.8-7.4 (10 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.18\left(1 \mathrm{H}, \mathrm{dd}, J 11.9\right.$ and $\left.3.8, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.06(1$ H , dd, $J 11.8$ and $\left.7.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 2.99(1$ $\mathrm{H}, \mathrm{dd}, J 7.6$ and $\left.4.0, \mathrm{OCHCH}_{2} \mathrm{O}\right), 2.91(1 \mathrm{H}, \mathrm{dd}, J 15.0$ and 12.3, $\left.\mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.30\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.J 11.5, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and 1.42 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$ ); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 68.1^{-}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 59.3^{+}\left(\mathrm{OCHCH}_{2} \mathrm{O}\right), 57.9^{-}(\mathrm{CMe}), 39.9^{-}\left({ }^{1} J_{\mathrm{PC}} 66.4\right.$, $\left.\mathrm{PCH}_{2}\right), 37.8^{+}\left(\mathrm{SO}_{2} \mathrm{Me}\right)$ and $19.1^{+}(\mathrm{CMe}) ; m / z 301(1.4 \%, \mathrm{M}-$ $\mathrm{SO}_{2} \mathrm{Me}$ ), 284 (17, $\mathrm{M}-\mathrm{OSO}_{2} \mathrm{Me}$ ), 271 (16, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{O}-$ $\left.\mathrm{SO}_{2} \mathrm{Me}\right), 202\left(44, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

## (2S,3S)-4-Diphenylphosphinoyl-2,3-epoxy-3-methylbutyl methanesulfonate 78

In the same way, the epoxy alcohol ${ }^{6} 77(752.3 \mathrm{mg}, 2.49 \mathrm{mmol})$ gave, after purification by flash chromatography, eluting with EtOAc, the epoxy mesylate 78 ( $935.7 \mathrm{mg}, 99 \%$ ) as minute needles, $\mathrm{mp} 117.5-119{ }^{\circ} \mathrm{C}$ (from EtOAc), $[\alpha]_{\mathrm{D}}^{25}-62.1$ ( $c 1.16$ in $\mathrm{CHCl}_{3} ; 97 \%$ ee) (Found: C, 56.7; H, 5.56; P, $8.15 \% ; \mathrm{M}^{+}$, 380.0867. $\mathrm{C}_{17}{ }_{7} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 56.8 ; \mathrm{H}, 5.56 ; \mathrm{P}, 8.14 \% ; M$, 380.0847); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.31 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1440$ (PPh), $1340(\mathrm{~S}=\mathrm{O})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8$-7.4 ( 10 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), $4.52\left(1 \mathrm{H}, \mathrm{dd}, J 12.2\right.$ and $2.8, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}$ ), 4.09 ( 1 $\mathrm{H}, \mathrm{dd}, J 12.2$ and $\left.8.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.12(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 2.8 , $\left.\mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, J 15.0$ and $\left.9.2, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.45\left(1 \mathrm{H}, \mathrm{t}, J 15.0, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.27(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}) ; ~ \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 69.3^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $60.7^{+}\left(\mathrm{OCHCH}_{2} \mathrm{O}\right), 58.3^{-}(\mathrm{CMe}), 37.9^{+}\left(\mathrm{SO}_{2} \mathrm{Me}\right), 35.6^{-}{\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}\right.}$ 66.1, $\mathrm{PCH}_{2}$ ) and $24.5^{+}(\mathrm{CMe})$; $m / z 380\left(3.5 \%, \mathrm{M}^{+}\right), 301$ ( 3 , $\mathrm{M}-\mathrm{SO}_{2} \mathrm{Me}$ ), 284 (32, $\mathrm{M}-\mathrm{MeSO}_{3} \mathrm{H}$ ), 271 (18, $\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{Me}\right), 202\left(38, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

## (2S,3R)-4-Diphenylphosphinoyl-2,3-epoxybutyl methane-

 sulfonate 82In the same way, the epoxy alcohol ${ }^{6} \mathbf{8 1}$ gave, after purification of the crude product by flash chromatography, eluting with EtOAc-4\% MeOH, the epoxy mesylate $82(1.358 \mathrm{~g}, 75 \%)$ as minute needles, $\mathrm{mp} 118.5-120.5^{\circ} \mathrm{C}$ (from EtOAc), $[\alpha]_{\mathrm{D}}^{25}-18.6$ (c 2.09 in $\mathrm{CHCl}_{3} ; 82 \%$ ee) (Found: C, $55.8 ; \mathrm{H}, 5.2 ; \mathrm{P}, 8.4 \%$; M $\mathrm{MeSO}_{3} \mathrm{H}, 270.0796 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{PS}$ requires C, $55.73 ; \mathrm{H}, 5.23$; $\left.\mathrm{P}, 8.45 \% ; M-\mathrm{MeSO}_{3} \mathrm{H}, 270.0810\right) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.15 ; \nu_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1440(\mathrm{PPh}), 1380(\mathrm{~S}=\mathrm{O})$ and $1145(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) $7.8-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.26(1 \mathrm{H}, \mathrm{dd}, J 12.1$ and 2.6, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J 12.1\right.$ and $\left.6.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right)$, $3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CHO}\right), 3.01\left(1 \mathrm{H}\right.$, fine $\left.\mathrm{m}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 2.96$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.81\left(1 \mathrm{H}\right.$, ddd, $J 14.6,11.0$ and $5.3, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ) and $2.36\left(1 \mathrm{H}\right.$, ddd, $J$ 14.6, 13.3 and $\left.6.8, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 133-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, $69.0^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right), 55.3^{+}\left({ }^{3} J_{\mathrm{PC}} 5.3\right.$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 50.7^{+}\left(\mathrm{PCH}_{2} \mathrm{CHO}\right), 37.7^{-}(\mathrm{Me})$ and $33.1^{-}\left({ }^{1} \mathrm{JPC}_{\mathrm{PC}}\right.$ $67.3, \mathrm{PCH}_{2}$ ); m/z 270 ( $15 \%, \mathrm{M}-\mathrm{MeSO}_{3} \mathrm{H}$ ), 215 (5, $\mathrm{Ph}_{2^{-}}$ $\left.\mathrm{POCH}_{2}\right), 202\left(92, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

## (2S,3S)-4-Diphenylphosphinoyl-2,3-dihydroxy-3-methylbutyl methanesulfonate 76

A solution of perchloric acid ( $72 \% ; 0.70 \mathrm{~cm}^{3}, 5.0 \mathrm{mmol}, 2.2$ equiv.) in water ( $7.5 \mathrm{~cm}^{3}$ ) was added to a stirred solution of the epoxy mesylate $75(861.3 \mathrm{mg}, 2.27 \mathrm{mmol})$ in DMSO $\left(17.5 \mathrm{~cm}^{3}\right)$. Stirring was continued at room temperature under nitrogen for 7 days after which the reaction mixture was partitioned between brine ( $100 \mathrm{~cm}^{3}$ ) and ethyl acetate ( $100 \mathrm{~cm}^{3}$ ), and diluted with water to clear the aqueous layer. The aqueous layer was extracted into ethyl acetate ( $6 \times 20 \mathrm{~cm}^{3}$ ) and the combined organic fractions were washed with brine ( $50 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure gave a crude product ( 1.06 g ). This was purified by flash chromatography, eluting with $\mathrm{EtOAc}-2 \% \mathrm{MeOH}$, to yield the mesylate 76 (825.3 $\mathrm{mg}, 92 \%$ ) as minute needles, $\mathrm{mp} 116-118^{\circ} \mathrm{C}$ (from EtOAchexane), $[\alpha]_{\mathrm{D}}^{25}-14.8$ (c 1.78 in $\mathrm{CHCl}_{3} ;>95 \%$ ee) (Found: $\mathrm{M}-\mathrm{MeSO}_{3} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}, 284.0973 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{PS}$ requires $M$ $\mathrm{CH}_{6} \mathrm{O}_{4} \mathrm{~S}$, 284.0980); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.27 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3310$ $(\mathrm{OH}), 1440(\mathrm{PPh}), 1350(\mathrm{~S}=\mathrm{O})$ and $145(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.45(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 2.7 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J 10.8\right.$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.81(1 \mathrm{H}$, dd, $J 7.5$ and $2.7, \mathrm{CHOH}$ ), $3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 2.80(1 \mathrm{H}, \mathrm{dd}, J$ 15.3 and $\left.12.0, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.55(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and 8.9 , $\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}$ ) and $1.23(3 \mathrm{H}, \mathrm{d}, J 1.3, \mathrm{CMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 134-128 ( $\mathrm{Ph}_{2} \mathrm{PO}$ ), $75.7^{+}\left({ }^{3} J_{\mathrm{PC}} 6.5, \mathrm{CHOH}\right), 74.2^{-}\left({ }^{2} J_{\mathrm{PC}} 5.5\right.$, $C \mathrm{Me}), 70.9^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right), 37.5^{+}\left(\mathrm{SO}_{2} \mathrm{Me}\right), 37.3^{-}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 69.0, \mathrm{PCH}_{2}\right)$ and $25.2^{+}\left({ }^{3} J_{\mathrm{PC}} 7.3, \mathrm{CMe}\right) ; m / z 284\left(3.5 \%, \mathrm{M}-\mathrm{HSO}_{3} \mathrm{Me}-\right.$
$\mathrm{H}_{2} \mathrm{O}$ ), 259 [45, $\left.\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}\right], 215$ (45, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (44, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2S,3R)-4-Diphenylphosphinoyl-2,3-dihydroxy-3-methylbutyl methanesulfonate 79

In the same way, the epoxy mesylate 78 ( $935.7 \mathrm{mg}, 2.36 \mathrm{mmol}$ ) gave, after 45 h , a crude product ( 1.32 g ) which was purified by flash chromatography, eluting with EtOAc- $2 \% \mathrm{MeOH}$, to yield the mesylate $79(756.4 \mathrm{mg}, 77 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}+57.4$ (c 1.81 in $\mathrm{CHCl}_{3} ; 73 \%$ ee) (Found: $\mathrm{M}-\mathrm{HOCHCH}_{2} \mathrm{OSO}_{2} \mathrm{Me}, 259.0678$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{PS}$ requires M - $\mathrm{HOCHCH}_{2} \mathrm{OSO}_{2} \mathrm{Me}$, 259.0688); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.28 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 1440(\mathrm{PPh}), 1350$ $(\mathrm{S}=\mathrm{O})$ and $1140(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ ), $4.41\left(1 \mathrm{H}, \mathrm{dd}, J 10.8\right.$ and $\left.3.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.25(1 \mathrm{H}, \mathrm{dd}, J$ 10.8 and $\left.7.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.85(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $3.0, \mathrm{CHOH})$, $3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 2.69\left(2 \mathrm{H}, \mathrm{ABP} \mathrm{m}, \mathrm{PCH}_{2}\right)$ and $1.18(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 75.1^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 6.3\right.$, CHOH ), $74.1^{-}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}} 4.2\right.$, CMe), $70.6^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right), 38.3^{+}\left({ }^{1} J_{\mathrm{PC}}\right.$ $68.3, \mathrm{PCH}_{2}$ ), $37.6\left(\mathrm{SO}_{2} \mathrm{Me}\right)$ and $25.9^{+}$( $\left.{ }^{3} \mathrm{JPC}_{\mathrm{PC}} 4.8, \mathrm{CMe}\right) ; \mathrm{m} / \mathrm{z} 259$ [ $\left.66 \%, \mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}\right], 216$ (22, $\mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 (55, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), $202\left(49, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$

## (2S,3S)-4-Diphenylphosphinoyl-2,3-dihydroxybutyl methane-

 sulfonate 83Water ( $3.5 \mathrm{~cm}^{3}$ ) and perchloric acid ( $72 \% ; 0.39 \mathrm{~cm}^{3}, 2.8 \mathrm{mmol}, 2$ equiv.) were added to a solution of the epoxy mesylate 82 ( 508.34 $\mathrm{mg}, 1.39 \mathrm{mmol}$ ) in THF ( $11.5 \mathrm{~cm}^{3}$ ) and the mixture was heated under reflux for 42 h . After cooling to room temperature, the mixture was diluted with water $\left(14 \mathrm{~cm}^{3}\right)$ and evaporated under reduced pressure to remove the THF. The resulting aqueous suspension was extracted with ethyl acetate ( $3 \times 10 \mathrm{~cm}^{3}$ ). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure and the residue was purified by flash chromatography, eluting with $\mathrm{EtOAc}-8 \% \mathrm{MeOH}$ to give the mesylate 83 ( $262.05 \mathrm{mg}, 49 \%$ ) as a foam; $[\alpha]_{\mathrm{D}}^{25}+1.1$ (c 1.59 in $\mathrm{CHCl}_{3} ; 35 \%$ ee) (Found: $\mathrm{M}-\mathrm{MeSO}_{3} \mathrm{CH}_{2} \mathrm{CHOH}, 245.0743$. $\mathrm{C}_{17}{ }_{7} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{PS}$ requires $\quad M-\mathrm{MeSO}_{3} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}, \quad 245.0732$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}-10 \% \mathrm{MeOH}) 0.46 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3150$ $(\mathrm{OH}), 1440(\mathrm{PPh}), 1360(\mathrm{~S}=\mathrm{O})$ and $1145(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.40(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and $\left.2.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.6.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.99(1$ $\mathrm{H}, \mathrm{ddt}, J 7.0,2.8$ and $10.0, \mathrm{PCH}_{2} \mathrm{CHOH}$ ), 3.73 ( 1 H , ddd, $J 7.1$, 6.3 and $2.9, \mathrm{CHOHCH}_{2} \mathrm{O}$ ), $3.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.90(1 \mathrm{H}$, ddd, $J$ 15.3, 12.0 and $2.8, \mathrm{PC}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ) and $2.63(1 \mathrm{H}, \mathrm{dt}, J 15.4$ and 9.8 , $\left.\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right)$ 135-129 ( $\mathrm{Ph}_{2} \mathrm{PO}$ ), $74.2^{+}\left({ }^{3} J_{\mathrm{PC}} \quad 11.9, \quad \mathrm{CHOHCH}_{2} \mathrm{O}\right), 72.4^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.1^{+}$ $\left(\mathrm{PCH}_{2} \mathrm{CHOH}\right), 37.2^{-}(\mathrm{Me})$ and $34.1^{-}\left({ }^{1} J_{\mathrm{PC}} 72.6, \mathrm{PCH}_{2}\right) ; m / z$ 245 ( $18 \%, \mathrm{M}-\mathrm{MeSO}_{3} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ ), 215 ( $20, \mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (38, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right), 201$ ( $75, \mathrm{Ph}_{2} \mathrm{PO}$ ) and 55 (100).

## (2S,3S)-1-Diphenylphosphinoyl-3,4-epoxy-2-methylbutan-2-ol

 70Potassium carbonate ( $540 \mathrm{mg}, 3.8 \mathrm{mmol}, 2$ equiv.) was added to a stirred solution of the mesylate $76(796.8 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry methanol ( $20 \mathrm{~cm}^{3}$ ) under nitrogen to give, after a few minutes, a thick white precipitate. After 20 min , the reaction mixture was diluted with ethyl acetate ( $100 \mathrm{~cm}^{3}$ ) and washed with water ( $2 \times 20 \mathrm{~cm}^{3}$ ). The aqueous fractions were extracted with ethyl acetate, and the combined organic fractions dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash chromatography yielded the terminal epoxide $70(592 \mathrm{mg}, 98 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}-11.2\left(c \quad 1.01\right.$ in $\mathrm{CHCl}_{3}$ ) (Found: $\mathbf{M}^{+}, 302.1064 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}$ requires $M, 302.1072$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.25 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1435(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, 2.84-2.76 [2 H, m, CH(O)CH pro-R $\left.H_{\text {pro-S }}\right], 2.69(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $\left.9.2, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.58\left(1 \mathrm{H}\right.$, dd, $J 15.2$ and $\left.11.0, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, $2.35\left(1 \mathrm{H}, \mathrm{dd}, J 4.8\right.$ and $4.0, \mathrm{CH}_{\text {pro }-\mathrm{R}} \mathrm{H}_{\text {pro- }-\mathrm{S}} \mathrm{O}$ ) and $1.28(3 \mathrm{H}, \mathrm{d}, J$
$1.2, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 70.8^{-}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}\right.$ $4.9, \mathrm{COH}), 58.1^{+}\left[{ }^{3} J_{\mathrm{PC}} 7.2, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\right.$ ], $45.1^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right), 38.1^{-}$ $\left({ }^{1} J_{\mathrm{PC}} 69.5, \mathrm{PCH}_{2}\right)$ and $26.8^{+}\left({ }^{3} J_{\mathrm{PC}} 8.3\right.$, Me); $m / z 302(0.7 \%$, $\mathrm{M}^{+}$), 284 (19, M - $\mathrm{H}_{2} \mathrm{O}$ ), 259 (68, M - $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ ), 216 (23, $\left.\mathrm{Ph}_{2} \mathrm{POMe}\right), 215\left(61, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 202\left(65, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in the presence of 1-(9-anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ showed an enantiomeric excess of $>95 \%$.

## (2R,3S)-1-Diphenylphosphinoyl-3,4-epoxy-2-methylbutan-2-ol

 80In the same way, the mesylate $79(703.2 \mathrm{mg}, 1.77 \mathrm{mmol})$ gave the terminal epoxide $80(509.2 \mathrm{mg}, 100 \%$ ) as minute prisms, mp $112-114^{\circ} \mathrm{C}$ (from EtOAc), $[\alpha]_{\mathrm{D}}^{25}+2.2\left(c 1.15\right.$ in $\mathrm{CHCl}_{3}$ ) (Found: C, 67.3; H, 6.5; P, 10.3\%; M - $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}, 259.0900$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 6.33 ; \mathrm{P}, 10.2 \% ; M-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$, $259.0888) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.25 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440(\mathrm{OH}), 1440$ $(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.4(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 4.61(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.94(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 2.8 , $\mathrm{CH}_{\text {pro }-\mathrm{R}} H_{\text {pro }-\mathrm{S}} \mathrm{O}$ ), 2.77 [ 1 H , dd, $J 5.2$ and $2.8, \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}$ ], 2.72 $\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.10.5, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.60(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and $\left.10.3, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.54\left(1 \mathrm{H}\right.$, dd, $J 5.2$ and $\left.4.1, \mathrm{CH}_{\text {pro }-\mathrm{R}} \mathrm{H}_{\text {pro- }-\mathrm{S}} \mathrm{O}\right)$ and $1.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, $70.1^{-}\left({ }^{2} J_{\mathrm{PC}} 4: 4, \mathrm{COH}\right), 58^{+}\left[{ }^{3} J_{\mathrm{PC}} 8.5, C \mathrm{H}(\mathrm{O}) \mathrm{CH}_{2}\right], 44.2^{-}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 38.5^{-}\left({ }^{1} J_{\mathrm{PC}} 69.4, \mathrm{PCH}_{2}\right)$ and $25.7^{+}\left({ }^{3} J_{\mathrm{PC}} 5.8, \mathrm{Me}\right) ; m / z$ 284 ( $19 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ ), 259 ( $87, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ ), 216 (18, $\left.\mathrm{Ph}_{2} \mathrm{POMe}\right), 215\left(49, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 202\left(49, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in the presence of 1-(9-anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ showed an enantiomeric excess of $73 \%$.

## (2S,3S)-1-Diphenylphosphinoyl-3,4-epoxybutan-1-ol 84

In the same way, the mesylate $83(120.6 \mathrm{mg}, 0.314 \mathrm{mmol})$ gave the terminal epoxide 84 ( $72.2 \mathrm{mg}, 80 \%$ ) as prisms, $\mathrm{mp} 121-$ $123{ }^{\circ} \mathrm{C}$ (from EtOAc), $[\alpha]_{\mathrm{D}}^{25}+17.3\left(c 1.31\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: C , $66.5 ; \mathrm{H}, 6.0 ; \mathrm{P}, 10.8 \% ; \mathrm{M}-\mathrm{OH}, 271.0875 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 66.66 ; \mathrm{H}, 5.94 ; \mathrm{P}, 10.74 \% ; M-\mathrm{OH}, 271.0888$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}-10 \% \mathrm{MeOH}) 0.41 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360(\mathrm{OH})$, $1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.4$ (10 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.6(1 \mathrm{H}$, br s, OH$), 3.83(1 \mathrm{H}, \mathrm{dq}, J 10.0$ and 6.0 , CHOH ), 3.03 ( 1 H , ddd, J 6.1, 3.8 and 2.6, CHOHCHO), 2.78 $\left(1 \mathrm{H}, \mathrm{dd}, J 4.8\right.$ and $\left.4.0, \mathrm{CH}_{\text {pro-R }} \mathrm{H}_{\text {pro- }-\mathrm{S}} \mathrm{O}\right), 2.70(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $\left.2.5, \mathrm{CH}_{\text {pro-R }} H_{\text {pro-s }} \mathrm{O}\right)$ and $2.60\left(2 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $6.3, \mathrm{PCH}_{2}$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 67.6^{+}(\mathrm{CHOH}), 54.6^{+}$ $\left({ }^{3} J_{\mathrm{PC}}\right.$ 14.4, CHOHCHO$), 46.2^{-}\left(\mathrm{CH}_{2} \mathrm{O}\right)$ and $33.6^{-}\left({ }^{1} J_{\mathrm{PC}} 71.4\right.$, $\mathrm{PCH}_{2}$ ) $\boldsymbol{m} / z 271$ (4\%), $\mathrm{M}-\mathrm{OH}$ ), 245 (72, $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ ), 216 (25, $\mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 (49, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (72, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum of this material in the presence of 1-(9-anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ showed an enantiomeric excess of $35 \%$

## (2S,3S)-4-Diphenylphosphinoyl-1-phenylsulfanylbutane-2,3-diol

 85Sodium benzenethiolate ( $41 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.5$ equiv.) was added to a stirred solution of the epoxy alcohol 84 ( 59.8 mg , 0.21 mmol ) in dry ethanol ( $2 \mathrm{~cm}^{3}$ ). After 1 h , the mixture was evaporated under reduced pressure and the residue dissolved in ethyl acetate. The solution was washed with dilute ammonia and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by flash chromatography, eluting with EtOAc- $2 \% \mathrm{MeOH}$, gave the sulfide $85(67.7 \mathrm{mg}$, $82 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}^{25}-1.7$ (c 1.06 in $\mathrm{CHCl}_{3} ; 35 \%$ ee); $R_{\mathrm{F}}(\mathrm{EtOAc}-4 \% \mathrm{MeOH}) 0.48 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3380(\mathrm{OH})$, $1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.8-7.1$ (15 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhS$), 4.00(1 \mathrm{H}$, fine m$), 3.65(1 \mathrm{H}$, fine m$)$ $(\mathrm{CHOH} \times 2), 3.34\left(1 \mathrm{H}\right.$, dd, $J 13.6$ and $\left.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{S}\right), 2.92(1 \mathrm{H}$, dd, $J 13.7$ and 8.2, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{S}\right), 2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$ and 2.50 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and
$\mathrm{PhS}), \quad 72.6^{+} \quad\left({ }^{3} J_{\mathrm{PC}} \quad 12.2, \quad \mathrm{CHOHCH}{ }_{2} \mathrm{~S}\right), \quad 69.7^{+} \cdot\left({ }^{2} J_{\mathrm{PC}} 4.8\right.$, $\left.\mathrm{PCH}_{2} \mathrm{CHOH}\right), 37.6^{-}\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and $32.1\left({ }^{1} J_{\mathrm{PC}} 71.5, \mathrm{PCH}_{2}\right)$.

## (2R,3R)-1-Diphenylphosphinoyl-2-methyl-4-phenylsulfanyl-butane-2,3-diol 86

In the same way, the epoxy alcohol 80 ( $155.2 \mathrm{mg}, 0.514 \mathrm{mmol})$ gave, without further purification, the sulfide $86(203.2 \mathrm{mg}$, $96 \%$ ) as minute needles, mp $102.5-105^{\circ} \mathrm{C}$ (from EtOAc), $[\alpha]_{\mathrm{D}}^{25}$ -27.0 ( $c 0.81$ in $\mathrm{CHCl}_{3}$; $>95 \%$ ee) (Found: $\mathrm{C}, 67.1$; $\mathrm{H}, 6.2$; $\mathrm{P}, 7.4 \% ; \mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 394.1148 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{PS}$ requires $\mathrm{C}, 66.97$; $\left.\mathrm{H}, 6.11 ; \mathrm{P}, 7.51 \% ; M-\mathrm{H}_{2} \mathrm{O}, 394.1156\right) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.50$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500-3100(\mathrm{OH}), 1440(\mathrm{PPh})$ and 1145 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.1\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{PhS}), 4.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.9(1 \mathrm{H}$, br s, OH$), 3.60(1 \mathrm{H}$, dd, $J 9.8$ and $2.4, \mathrm{CHOH}), 3.26\left(1 \mathrm{H}\right.$, dd, $J 13.4$ and $\left.2.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{S}\right), 2.94$ ( 1 H , dd, $J 13.4$ and $9.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{S}$ ), $2.67\left(2 \mathrm{H}, \mathrm{ABP}\right.$ m, $\mathrm{PCH}_{2}$ ) and $1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 136-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhS$), 75.7^{+}\left({ }^{3} J_{\mathrm{PC}} 7.4, \mathrm{CHOH}\right), 74.8^{-}\left({ }^{2} J_{\mathrm{PC}} 4.7, \mathrm{HOCMe}\right)$, $37.2^{-}\left({ }^{1} J_{\mathrm{PC}} 69.1, \mathrm{PCH}_{2}\right), 36.2^{-}\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and $26.1^{+}\left({ }^{3} J_{\mathrm{PC}} 4.1\right.$, Me ); $m / z 394\left(4 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right.$ ), 303 (3, M -SPh ), 285 (92, $\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{SPh}\right), 259$ [56, $\left.\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}\right], 216$ (27, $\left.\mathrm{Ph}_{2} \mathrm{POMe}\right), 215\left(47, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 202\left(51, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2RS,3RS)-1-Diphenylphosphinoyl-4-(4-hydroxyphenylsulfanyl)-2-methylbutane-2,3-diol 87

Butyllithium ( $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $0.18 \mathrm{~cm}^{3}, 0.23$ mmol, 1.0 equiv.) was added to a stirred solution of 4 hydroxybenzenethiol ( $86 \mathrm{mg}, 0.681 \mathrm{mmol}, 2.9$ equiv.) in dry THF ( $2 \mathrm{~cm}^{3}$ ) at $0^{\circ} \mathrm{C}$ under nitrogen. The epoxy alcohol 80 $(70.11 \mathrm{mg}, 0.232 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to the reaction mixture which was then allowed to warm to room temperature over 30 min . After this it was evaporated under reduced pressure, and the residue purified by flash chromatography, eluting with EtOAc, to yield the sulfide 87 ( $74.7 \mathrm{mg}, 75 \%$ ) as a foam (Found: $\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{~S}$, 268.1014. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{PS}$ requires $M-\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~S}, 268.1017$ ); $R_{\mathrm{F}}(\mathrm{EtOAc})$ $0.36 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500-3100(\mathrm{OH}), 1440(\mathrm{PPh})$ and 1145 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.28(2$ $\left.\mathrm{H}, \mathrm{d}, J 8.6, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{H}_{2}\right), 6.71\left(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{H}_{2}\right), 3.44(1 \mathrm{H}$, dd, $J 9.9$ and $2.1, \mathrm{CHOH}), 3.16(1 \mathrm{H}$, dd, $J 13.5$ and 2.1, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{S}\right), 2.85-2.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{S}\right.$ and $\left.\mathrm{PCH}_{2}\right)$ and $1.15(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}\right) 134-116\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{PhS}), 74.9^{+}(\mathrm{CHOH})$, $74.4^{-}$(4.7, HOCMe), $38.8^{-}\left(\mathrm{CH}_{2} \mathrm{~S}\right)$, $37.4^{-}\left({ }^{1} J_{\mathrm{PC}} 69.3, \mathrm{PCH}_{2}\right)$ and $25.3^{+}\left({ }^{3} J_{\mathrm{PC}} 4.1\right.$, Me); $m / z 268$ $\left(0.4 \%, \mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 216$ ( $30, \mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 (100, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (10, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (78, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

## (2RS,3RS)-1-Diphenylphosphinoyl-2-methyl-4-(3-phenylpropyl-

 sulfanyl)butane-2,3-diol 88In the same way, the epoxy alcohol $80(87.35 \mathrm{mg}, 0.289 \mathrm{mmol})$ with 3-phenylpropanethiol ( $0.225 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}, 5.2$ equiv.) gave, after purification by flash chromatography, eluting with EtOAc-hexane ( $1: 1$ ) and then EtOAc, the sulfide $88(106.0 \mathrm{mg}$, $81 \%$ ) as an unrecrystallisable solid (Found: $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$, 436.1649. $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{PS}$ requires $M-\mathrm{H}_{2} \mathrm{O}, 436.1626 ; R_{\mathrm{F}^{-}}$ $(\mathrm{EtOAc}) 0.50 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1160(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.1\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph), 4.62 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{MeCOH}$ ), 3.84 ( $1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{CHOH}$ ), 3.58 ( 1 $\mathrm{H}, \mathrm{dt}, J 10.0$ and $3.5, \mathrm{CHOH}), 2.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.7(4$ $\mathrm{H}, \mathrm{m}, \mathrm{CHOHCH} \mathrm{S}_{2} \mathrm{~S}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ or $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 2.54(1 \mathrm{H}$, dd, $J$ 13.5 and $\left.9.9, \mathrm{PCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}}\right), 2.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 1.87 ( 2 H , quintet, $J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ ) and $1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 141-126\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhS$), 75.8^{+}\left({ }^{3} J_{\mathrm{PC}}\right.$ $7.2, \mathrm{CHOH}), 74.8^{-}\left({ }^{2} J_{\mathrm{PC}} 4.6, \mathrm{HOCMe}\right), 37.2^{-}\left({ }^{1} J_{\mathrm{PC}} 69.1\right.$, $\left.\mathrm{PCH}_{2}\right), 34.7^{-}, 34.1^{-}, 31.6^{-}, 31.1^{-}\left[\mathrm{CH}_{2} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{3}\right]$ and $25.9^{+}$ $\left({ }^{3} J_{\mathrm{PC}} 4.6, \mathrm{Me}\right) ; m / z 436\left(2 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 259\left[28, \mathrm{Ph}_{2} \mathrm{POCH}_{2}-\right.$
$\mathrm{C}(\mathrm{OH}) \mathrm{Me}], 216$ (47, $\left.\mathrm{Ph}_{2} \mathrm{POMe}\right), 215$ ( $87, \mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (36, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2SR,3RS)-1-Azido-4-diphenylphosphinoyl-3-methylbutane-2,3diol 89

A solution of sodium azide ( $35.5 \mathrm{mg}, 0.55 \mathrm{mmol}, 5$ equiv.) and ammonium chloride ( $25.25 \mathrm{mg}, 0.47 \mathrm{mmol}, 4.25$ equiv.) in water ( $0.125 \mathrm{~cm}^{3}$ ) was added at room temperature to a solution of the epoxy alcohol 80 ( $33.5 \mathrm{mg}, 0.111 \mathrm{mmol}$ ) in 2-methoxyethanol ( 1 $\mathrm{cm}^{3}$ ). The mixture was refluxed ( $135^{\circ} \mathrm{C}$ ) for 45 min , cooled, and concentrated under reduced pressure. The residue was purified by flash chromatography, eluting with EtOAc, to give the azide $89(37.1 \mathrm{mg}, 97 \%)$ as minute prisms, $\mathrm{mp} 140-142^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 59.3; H, 5.65; N, 11.0; P, 9.02\%; M $\mathrm{CH}_{2} \mathrm{~N}_{3}, 289.0972 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}$ requires C, 59.1; $\mathrm{H}, 5.8 ; \mathrm{N}$, $\left.12.2 ; \mathrm{P}, 9.0 \% ; M-\mathrm{CH}_{2} \mathrm{~N}_{3}, 289.0994\right)$; $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.45$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3100(\mathrm{OH}), 2100\left(\mathrm{~N}_{3}\right), 1440(\mathrm{PPh})$ and 1135 ( $\mathrm{P}=\mathrm{O}$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) 7.8-7.4 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), $4.5(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH} \times 2), 3.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.37(1 \mathrm{H}, \mathrm{dd}, J$ 12.7 and $7.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}_{3}$ ), $3.29(1 \mathrm{H}$, dd, $J 12.7$ and 3.8 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}_{3}\right), 2.67\left(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{PCH}_{2}\right)$ and $1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$, 76.4 ${ }^{+}\left({ }^{3} J_{\mathrm{PC}} 5.9\right.$, $\mathrm{CHOH}), 74.3^{-}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}} 4.5, \mathrm{CMe}\right)$, $52.0^{-}\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, $39.6^{-}\left({ }^{1} J_{\mathrm{PC}}\right.$ $68.0, \mathrm{PCH}_{2}$ ) and $25.8^{+}(\mathrm{CMe}) ; m / z 289\left(1 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 259$ [25, $\left.\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}\right], 215\left(9, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 202$ (30, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right), 201$ ( $70, \mathrm{Ph}_{2} \mathrm{PO}$ ) and 85 (100).
(2SR,3RS)-4-Diphenylphosphinoyl-3-methyl-1-(4-methylphenyl-sulfonamido)butane-2,3-diol 90
$5 \%$ Palladium-on-charcoal ( $45 \mathrm{mg}, 25 \mathrm{~mol} \%$ ) was added to a solution of the azide $89(117.78 \mathrm{mg}, 0.34 \mathrm{mmol})$ in dry methanol ( $2 \mathrm{~cm}^{3}$ ). The resulting suspension was stirred under an atmosphere of hydrogen for 23 h , filtered through Celite and evaporated under reduced pressure to give the amine 92 ( 97 mg , $90 \%$ ). DMAP ( $43 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.15$ equiv.) and toluenesulfonyl chloride ( $58 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv.) were added to a solution of this material in dry dichloromethane ( 1 $\mathrm{cm}^{3}$ ). After 18 h , the reaction mixture was concentrated and purified by flash chromatography, eluting with EtOAc-hexane (4:1) and then EtOAc-10\% hexane, to give the sulfonamide 90 ( $79.5 \mathrm{mg}, 49 \%$ ) as minute needles, $\mathrm{mp} 175-177^{\circ} \mathrm{C}$ (from EtOAc-MeOH) (Found: C, 60.9; H, 5.9; N, 3.0; P, 6.44\%; M TsNHCH ${ }_{2} \mathrm{CHOH}, 259.0907 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{PS}$ requires C, 60.88 ; H, 5.96 ; N, 2.96; P, 6.54\%; $M-\mathrm{TsNHCH}_{2} \mathrm{CHOH}$, 259.0888); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.34 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.2$ ( 14 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{MeC}_{6} H_{4} \mathrm{SO}_{2}$ ), $5.38(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{NH}), 4.7$ (1 $\mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.3(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.20(1 \mathrm{H}$, ddd, $J 12.3,9.1$ and $\left.3.4, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.85(1 \mathrm{H}$, ddd, $J 12.2,8.3$ and $\left.2.6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.63\left(2 \mathrm{H}, \mathrm{ABP} \mathrm{m}, \mathrm{PCH}_{2}\right), 2.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$ ) and $1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144$ $127\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right), 75.1^{+}\left({ }^{3} J_{\mathrm{PC}} 6.5, \mathrm{CHOH}\right), 74.4$ ( $\left.{ }^{2} J_{\mathrm{PC}} 4.4, \mathrm{HOCMe}\right), 44.0^{-}\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $38.4^{-}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 68.4, \mathrm{PCH}_{2}\right)$, $25.5^{+}\left({ }^{3} J_{\mathrm{PC}} 4.6, \mathrm{HOCMe}\right)$ and $21.5^{+}\left(\mathrm{MeC}_{6} \mathrm{H}_{4}\right) ; m / z 259[8 \%$, $\left.\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}\right], 216$ (36, $\mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 ( $90, \mathrm{Ph}_{2^{-}}$ $\mathrm{POCH}_{2}$ ), 202 (17, $\mathrm{Ph}_{2} \mathrm{POH}$ ), 201 ( $80, \mathrm{Ph}_{2} \mathrm{PO}$ ) and 91 ( 100 , $\mathrm{MeC}_{6} \mathrm{H}_{4}$ ).

## (2SR,3RS)-1-Acetamido-4-diphenylphosphinoyl-3-methyl-butane-2,3-diol 91

$5 \%$ Palladium-on-charcoal ( $90 \mathrm{mg}, 25 \mathrm{~mol} \%$ ) was added to a solution of the azide 89 ( $58.9 \mathrm{mg}, 0.17 \mathrm{mmol}$ ) in dry methanol ( $3.5 \mathrm{~cm}^{3}$ ). The resulting suspension was stirred under an atmosphere of hydrogen for 23 h , filtered through Celite and evaporated under reduced pressure to give the amine 92 (50.9 $\mathrm{mg}, 94 \%$ ). Dry dichloromethane ( $1 \mathrm{~cm}^{3}$ ) and acetic anhydride $\left(0.5 \mathrm{~cm}^{3}\right)$ were added to the mixture which was then stirred at room temperature under nitrogen for 20 min . After this it was concentrated and the residue purified by flash chromatography
to yield the acetamide 91 ( $40.1 \mathrm{mg}, 74 \%$ ) as a foam (Found: $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$, 343.1343. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$, 343.1338); $R_{\mathrm{F}}(\mathrm{EtOAc}-20 \% \mathrm{MeOH}) 0.28 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3600-3100 ( OH and NH ), $1660(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PPh})$ and 1150 ( $\mathrm{P}=\mathrm{O}$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.63$ ( 1 $\mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}), 4.6(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH} \times 2)$, $3.60(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$ ), $3.04\left(1 \mathrm{H}\right.$, ddd, $J 13.6,7.9$ and $4.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$ ), $2.66\left(2 \mathrm{H}, \mathrm{ABP} \mathrm{m}, \mathrm{PCH}_{2}\right), 1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CMe})$ and $1.14(3 \mathrm{H}$, $\mathrm{s}, \mathrm{HOCMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 76.2^{+}$ ( $\left.{ }^{3} J_{\mathrm{PC}} 6.6, \mathrm{CHOH}\right), 74.3^{-}\left({ }^{2} J_{\mathrm{PC}} 4.6, \mathrm{HOCMe}\right), 40.8^{-}\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $37.9^{-}\left({ }^{1} J_{\mathrm{PC}} 68.6, \mathrm{PCH}_{2}\right), 25.4^{+}\left({ }^{3} J_{\mathrm{PC}} 5.1, \mathrm{HOCMe}\right)$ and $23.1^{+}$ ( $\mathrm{MeC}=\mathrm{O}$ ); $m / z 343\left(2 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 259\left(100, \mathrm{Ph}_{2} \mathrm{POCH}_{2}-\right.$ COHMe), 216 (22, $\mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 ( $49, \mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (71, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $88, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2SR,3RS)-1-Amino-4-diphenylphosphinoyl-3-methylbutane-2,3-diol 92

Concentrated ammonia ( $d 0.880 ; 1 \mathrm{~cm}^{3}$ ) was added to a stirred solution of the epoxy alcohol $80(73.1 \mathrm{mg}, 0.242 \mathrm{mmol})$ in methanol ( $1 \mathrm{~cm}^{3}$ ). After 51 h , the mixture was evaporated under reduced pressure to give the amine $92(77.6 \mathrm{mg}, 100 \%)$ as an oil; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.0(4 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH} \times 2$ and $\mathrm{NH}_{2}$ ), $3.49(1 \mathrm{H}$, dd, $J 3.8$ and $7.0, \mathrm{CHOH}), 3.0-$ $2.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right.$ and $\left.\mathrm{NH}_{2}\right)$ and $1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

The amine 92 was characterised by conversion into the acetamide 91: acetic anhydride $\left(1 \mathrm{~cm}^{3}\right)$ was added to a solution of the amine 92 ( $77.6 \mathrm{~cm}^{3}, 0.24 \mathrm{mmol}$ ) in dichloromethane ( 2 $\mathrm{cm}^{3}$ ). After 1 h , the reaction mixture was concentrated under reduced pressure and purified by flash chromatography, eluting with $\mathrm{EtOAc}-16 \% \mathrm{MeOH}$, to yield the acetamide 91 ( 70.6 mg , $81 \%$ ).

## (2SR,3RS)-1-(5-Bromouracil-1-yl)-4-diphenylphosphinoyl-3-methylbutane-2,3-diol 93

Sodium hydride ( $60 \%$ suspension; $9.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.1$ equiv.) was added to a stirred solution of 5 -bromouracil ( 104.3 $\mathrm{mg}, 0.545 \mathrm{mmol}, 2.5$ equiv.) in dry DMF ( $1.5 \mathrm{~cm}^{3}$ ) at room temperature under nitrogen. After 30 min , evolution of hydrogen had ceased, and the epoxy alcohol 80 ( $67.0 \mathrm{mg}, 0.222$ mmol ) was added to the solution. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 h , cooled to room temperature, diluted with ethyl acetate ( $25 \mathrm{~cm}^{3}$ ) and washed with dilute aqueous sodium hydroxide ( $10 \mathrm{~cm}^{3}$ ) and water. The aqueous fractions were acidified with dilute hydrochloric acid ( $12 \mathrm{~cm}^{3}$ ) and extracted with ethyl actetate ( $10 \mathrm{~cm}^{3} \times 2$ ). The combined organic fractions were washed with water $\left(10 \mathrm{~cm}^{3} \times 2\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporateed under reduced pressure to yield a crude oil. Purification of this by flash chromatography, eluting with EtOAc and then EtOAc-5\% MeOH, gave the pyrimidine 93 $(60.0 \mathrm{mg}, 59 \%)$ as a solid, $\mathrm{mp}>220^{\circ} \mathrm{C}$ (decomp.). (Found: $\mathrm{M}-\mathrm{CH}_{2}$ pyrimidine $-\mathrm{H}_{2} \mathrm{O}, 271.0895 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrO}_{5} \mathrm{P}$ requires $M-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}, 271.0888$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.18 ; v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3100(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.94\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}^{6} \mathrm{H}\right)$, 7.8-7.4 ( $10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), $5.8(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 4.25\left(1 \mathrm{H}, \mathrm{d}, J 13.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.84(1 \mathrm{H}, \mathrm{d}, J 9.6$, CHOH ), 3.41 ( 1 H , dd, $J 13.0$ and 10.1, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$ ), 2.77 ( 2 H , $\mathrm{ABP} \mathrm{m}, \mathrm{PCH}_{2}$ ) and $1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 160.2, 150.7, 146.0, 133-128 ( $\mathrm{Ph}_{2} \mathrm{PO}$ ), 95.4, $74.4^{+}(\mathrm{CHOH})$, $74.4^{-}(\mathrm{HOCMe}), 50.3^{-}\left(\mathrm{CH}_{2} \mathrm{~N}\right), 38.7^{-}\left({ }^{1} J_{\mathrm{PC}} 67.9, \mathrm{PCH}_{2}\right)$ and $25.6^{+}$(Me); $m / z 271$ ( $9 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}$ pyrimidine), 259 [14, $\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}$, 216 (19, $\mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 (79, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 ( $40, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).
(2SR,3RS)-1-(6-Chloropurin-9-yl)-4-diphenylphosphinoyl-3-methylbutane-2,3-diol 94
Sodium hydride ( $60 \% ; 15.7 \mathrm{mg}, 0.393 \mathrm{mmol}, 1.0$ equiv.) was added to a stirred solution of 6 -chloropurine $(122.7 \mathrm{mg}, 0.794$
mmol, 2.02 equiv.) in dry DMF ( $2 \mathrm{~cm}^{3}$ ) at room temperature under nitrogen. After 25 min , evolution of hydrogen had ceased, and the epoxy alcohol $80(118.6 \mathrm{mg}, 0.393 \mathrm{mmol})$ was added to the blue-brown solution. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 11 h , during which time it became purple. After cooling to room temperature, the mixture was diluted with ethyl acetate ( $40 \mathrm{~cm}^{3}$ ) and washed with dilute aqueous ammonia ( 10 $\mathrm{cm}^{3}$ ). The aqueous layer was extracted with ethyl acetate ( 10 $\mathrm{cm}^{3}$ ) and the combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to yield a crude oil. Purification of this by flash chromatography, eluting with $\mathrm{EtOAc}-6 \% \mathrm{MeOH}$ and then EtOAc-10\% MeOH, gave the purine $94\left(84.5 \mathrm{mg}, 47 \%\right.$ ) as minute needles, $\mathrm{mp} 117-124^{\circ} \mathrm{C}$ (from EtOAc) [Found: C, 57.5; H, 4.7; N, 12.2; P, 7.5\%; M $\mathrm{H}_{2} \mathrm{O}, 438.1016 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{P}$ requires C, $57.8 ; \mathrm{H}, 4.85 ; \mathrm{N}$, $\left.12.26 ; \mathrm{P}, 6.78 \% ; \mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 438.1007\left({ }^{35} \mathrm{Cl}\right)\right] ; R_{\mathrm{F}}(\mathrm{EtOAc}-6 \%$ $\mathrm{MeOH}) 0.31 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3150(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1145(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}^{2} \mathrm{H}\right), 8.24$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}^{8} \mathrm{H}\right), 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.24(1 \mathrm{H}, \mathrm{d}, J 5.3$, $\mathrm{CHOH}), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J 14.0\right.$ and $\left.2.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 4.29(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NCH}_{2} \mathrm{COH}$ ), 4.14 ( 1 H , dd, $J 14.0$ and 9.6, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$ ), 3.91 ( 1 $\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.76\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and $\left.9.9, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.68(1$ $\mathrm{H}, \mathrm{dd}, J 15.3$ and $\left.12.4, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) 151.8,151.5,150.6,147.1,133-128$ $\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 75.2^{+}(\mathrm{CHOH}), 74.0^{-}(\mathrm{HOCMe}), 45.4^{-}\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $37.8^{-}\left({ }^{1} J_{\mathrm{PC}} 68.2, \mathrm{PCH}_{2}\right)$ and $25.6^{+}(\mathrm{Me}) ; m / z 440[0.5 \%, \mathrm{M}-$ $\left.\mathrm{H}_{2} \mathrm{O}\left({ }^{37} \mathrm{Cl}\right)\right], 438\left[0.6, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\left({ }^{35} \mathrm{Cl}\right)\right], 271(31, \mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}$ purine), 259 [ $41, \mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}$ ], 215 (45, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (53, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

Also obtained was (2SR,3RS)-1-(6-chloropurin-1-yl)-4-diphenylphosphinoyl-3-methylbutane-2,3-diol 95 ( $22.1 \mathrm{mg}, 12 \%$ ) as an oil (Found: $\mathrm{M}-\mathrm{CH}_{2}$ purine, 289.0986. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}-\mathrm{CH}_{2}$ purine, 289.0994); $R_{\mathrm{F}}(\mathrm{EtOAc}-6 \% \mathrm{MeOH})$ $0.16 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3150(\mathrm{OH}), 1440(\mathrm{PPh})$ and 1145 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}^{2} \mathrm{H}\right), 8.25(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}^{8} \mathrm{H}\right), 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.89(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 2.1 , $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$ ), $4.22\left(1 \mathrm{H}, \operatorname{dd}, J 14.4\right.$ and $\left.9.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.99(1 \mathrm{H}$, dd, $J 10.0$ and $2.1, \mathrm{CHOH}), 2.82\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PCH}_{2}\right)$ and 1.30 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right.$ ) 161.3, 151.9, 151.0, 142.7, $133-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 75.4^{+}\left({ }^{3} J_{\mathrm{PC}} 5.3, \mathrm{CHOH}\right), 74.3^{-}\left({ }^{2} J_{\mathrm{PC}}\right.$ 4.0, HOCMe$)$, $48.4^{-}\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $38.7^{-}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}} 67.2, \mathrm{PCH}_{2}\right)$ and $26.2^{+}$( ${ }^{3} J_{\mathrm{PC}} 4.2, \mathrm{Me}$ ); $m / z 289$ (5, M - $\mathrm{CH}_{2}$ purine), 271 ( 4, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}$ purine), 259 [12, $\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}$ ], 215 (75, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (22, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (3SR,4RS)-5-Diphenylphosphinoyl-3,4-dihydroxy-4-methylpentanenitrile 96

Anhydrous ytterbium(III) chloride ( $208.9 \mathrm{mg}, 0.748 \mathrm{mmol}, 1.15$ equiv.), which had been dried for 4 h at $200^{\circ} \mathrm{C}$ under reduced pressure, was dissolved in dry THF ( $30 \mathrm{~cm}^{3}$ ) by sonication for 30 min , after which the solution was cooled to $-70^{\circ} \mathrm{C}$ under nitrogen. Butyllithium ( $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; 1.4 $\mathrm{cm}^{3}, 2.25 \mathrm{mmol}, 3.5$ equiv.) was added to the mixture and stirring was continued at $-70^{\circ} \mathrm{C}$ for 15 min . During this time the solution became brown and then yellow. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$, and trimethylsilyl cyanide ( 0.8 $\mathrm{cm}^{3}, 6.0 \mathrm{mmol}, 9$ equiv.) was added to it. After a further 15 min at $0^{\circ} \mathrm{C}$, a solution of the epoxy alcohol $80(195.6 \mathrm{mg}, 0.648$ $\mathrm{mmol})$ in THF ( $2 \mathrm{~cm}^{3}$ ) was added to the red-brown solution. The reaction mixture was warmed to room temperature overnight, during which time the colour faded considerably. After 16 h , dilute hydrochloric acid ( $10 \mathrm{~cm}^{3}$ ) was added to the mixture which was then stirred for 1 h . After this, the mixture was neutralised with saturated aqueous sodium carbonate, diluted with brine ( $50 \mathrm{~cm}^{3}$ ) and concentrated under reduced pressure to remove the THF. The aqueous suspension was extracted with ethyl acetate ( $3 \times 50 \mathrm{~cm}^{3}$ ) and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced
pressure. The residue was purified by flash chromatography, eluting with EtOAc-hexane (4:1) to give the nitrile 96 (195.4 $\mathrm{mg}, 92 \%$ ) as minute needles, $\mathrm{mp} 131-132.5^{\circ} \mathrm{C}$ (from EtOAcMeOH ) (Found: C, 65.4; H, 6.0; N, 4.3; P, 9.3\%; M $-\mathrm{H}_{2} \mathrm{O}$, $311.1091 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{P}$ requires $\mathrm{C}, 65.65 ; \mathrm{H}, 6.12 ; \mathrm{N}, 4.25 ; \mathrm{P}$, $\left.9.41 \% ; M-\mathrm{H}_{2} \mathrm{O}, 311.1075\right) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.34 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3600-3100(\mathrm{OH}), 2260(\mathrm{CN}), 1440(\mathrm{PPh})$ and 1145 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.15(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.69(2$ $\left.\mathrm{H}, \mathrm{ABP} \mathrm{m}, \mathrm{PCH}_{2}\right), 2.59\left(1 \mathrm{H}, \mathrm{dd}, J 16.7\right.$ and $\left.4.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CN}\right)$, $2.52\left(1 \mathrm{H}, \mathrm{dd}, J 16.7\right.$ and $\left.8.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CN}\right)$ and $1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 118.6^{-}(\mathrm{CN}), 74.3^{-}$ ( $\left.{ }^{2} J_{\mathrm{PC}} 4.1, \mathrm{HOCMe}\right), 73.3^{+}\left({ }^{3} J_{\mathrm{PC}} 6.2, \mathrm{CHOH}\right), 37.8^{-}\left({ }^{1} J_{\mathrm{PC}} 66.1\right.$, $\left.\mathrm{PCH}_{2}\right), 25.8^{+}\left({ }^{3} \mathrm{JPC}_{\mathrm{PC}} 4.5, \mathrm{Me}\right)$ and $20.4^{+}\left(\mathrm{CH}_{2} \mathrm{CN}\right) ; \mathrm{m} / \mathrm{z} 311(4 \%$, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ ), $259 \quad\left[80 \%, \mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Me}\right], 216$ (17, $\left.\mathrm{Ph}_{2} \mathrm{POMe}\right), 215$ (48, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 ( $87, \mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $100, \mathrm{Ph}_{2} \mathrm{PO}$ ).

## (2RS,3SR)-5-Acetamido-1-diphenylphosphinoyl-2-methyl- <br> pentane-2,3-diol 97

Platinum dioxide ( $10 \mathrm{mg}, 0.044 \mathrm{mmol}, 38 \mathrm{~mol} \%$ ) was added to a solution of the nitrile 96 ( $38.5 \mathrm{mg}, 0.117 \mathrm{mmol}$ ) in acetic anhydride ( $2 \mathrm{~cm}^{3}$ ). The suspension was stirred under an atmosphere of hydrogen for 7 h , filtered through Celite, evaporated under reduced pressure and the residue purified by PLC, eluting with EtOAc-12\% MeOH, to give the acetamide 97 ( $16.4 \mathrm{mg}, 37 \%$ ) as an oil (Found: $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}_{2}, 341.1566$. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}_{2}, 341.1545$ ); $R_{\mathrm{F}}(\mathrm{EtOAc}-10 \%$ $\mathrm{MeOH}) \quad 0.10 ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 3600-3100(\mathrm{OH}), \quad 1660$ (amide), $1440(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-$ $7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.48(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}), 3.60(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH}), 3.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right)$, $2.66\left(1 \mathrm{H}, \mathrm{dd}, J 15.3\right.$ and $\left.10.0, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.57(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and 11.7, $\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}$ ), $1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CMe}), 1.67(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHOHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOHCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.16(3 \mathrm{H}, \mathrm{s}$, $\mathrm{HOCMe}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 133-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 75.6^{+}\left({ }^{3} J_{\mathrm{PC}}\right.$ $6.7, \mathrm{CHOH}$ ), $75.0^{-}$( ${ }^{2} J_{\mathrm{PC}} 5.1$, HOCMe), $38.2^{-}$( ${ }^{1} J_{\mathrm{PC}} 68.8$, $\left.\mathrm{PCH}_{2}\right), 37.3^{-}\left(\mathrm{CH}_{2} \mathrm{NH}\right), 29.9^{-}\left(\mathrm{CHOHCH}_{2}\right), 25.1^{+}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} 6.9\right.$, HOCMe) and $23.3^{+}$( $\mathrm{MeC=O}$ ); $\mathrm{m} / \mathrm{z} 341$ ( $9 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}_{2}$ ), 216 (38, $\mathrm{Ph}_{2} \mathrm{POMe}$ ), 215 ( $100, \mathrm{Ph}_{2} \mathrm{POCH}_{2}$ ), 202 (24, $\mathrm{Ph}_{2} \mathrm{POH}$ ) and 201 ( $72, \mathrm{Ph}_{2} \mathrm{PO}$ ).
In another experiment, the nitrile $96(28.0 \mathrm{mg})$ and $5 \%$ palladium-on-charcoal ( $90 \mathrm{mg}, 50 \mathrm{~mol} \%$ ) in acetic anhydride ( $1.7 \mathrm{~cm}^{3}$ ) gave, after 24 h , and without purification, the ketone ${ }^{35} 98$ ( $14.6 \mathrm{mg}, 67 \%$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 7.8-7.4(10$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ ), 3.59 ( $2 \mathrm{H}, \mathrm{d}, J 14.8$ ) and $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

## ( $\boldsymbol{R}$ )-1-Phenylsulfanylbut-3-en-2-ol 99

Sodium hydride ( $60 \%$ suspension; $20 \mathrm{mg}, 0.50 \mathrm{mmol}, 5$ equiv.) was added to a stirred solution of the sulfide $85(37.3 \mathrm{mg}, 0.094$ mmol ) in dry DMF under nitrogen. The mixture was heated to $60^{\circ} \mathrm{C}$ for 30 min , cooled, quenched with saturated aqueous ammonium chloride ( $1 \mathrm{~cm}^{3}$ ), and partitioned between ether ( 20 $\mathrm{cm}^{3}$ ) and water ( $20 \mathrm{~cm}^{3}$ ). The aqueous layer was extracted into ether ( $\times 2$ ), and the combined organic fractions were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification of the residue by PLC, eluting with hexane-EtOAc (4:1), gave the allylic alcohol $99(4.9 \mathrm{mg}, 29 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}-7.0\left(c 0.23\right.$ in $\mathrm{CHCl}_{3} ; 35 \%$ ee) (Found: $\mathrm{M}^{+}$, $180.0600 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{OS}$ requires $M, 180.0609$ ); $R_{\mathrm{F}}$ [hexaneEtOAc (4:1)] 0.35; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600(\mathrm{OH})$ and 1600 $(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.4-7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.87(1 \mathrm{H}$, ddd, $J$ 16.7, 10.4, $6.0, \mathrm{C} H=\mathrm{CH}_{2}$ ), 5.31 ( $1 \mathrm{H}, \mathrm{d}, J 17.2$, $\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ), $5.18\left(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.18(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH})$, $3.16\left(1 \mathrm{H}, \mathrm{dd}, J 13.6\right.$ and $\left.4.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{S}\right)$ and 2.94 ( 1 H , dd, $J 13.6$ and $8.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{S}$ ); $m / z 180\left(27 \%, \mathrm{M}^{+}\right), 124$ (42, PhSMe), $123\left(100, \mathrm{PhSCH}_{2}\right), 110(24, \mathrm{PhSH})$ and 109 (13, PhS).

## (R)-3-Methyl-1-phenylsulfanylbut-3-en-2-ol 100

In the same way, the sulfide $86(250.3 \mathrm{mg}, 0.61 \mathrm{mmol})$, with sodium hydride ( $60 \%$ suspension; $100 \mathrm{mg}, 2.5 \mathrm{mmol}, 4.1$ equiv.) in dry DMF ( $10 \mathrm{~cm}^{3}$ ) gave, after 90 min , a crude product. Purification of this by PLC, eluting with hexane-ether ( $4: 1$ ), gave the allylic alcohol $100(17.3 \mathrm{mg}, 15 \%)$ as an oil, $[\alpha]_{\mathrm{D}}^{25}$ -45.7 (c 0.64 in $\mathrm{CHCl}_{3} ;>95 \%$ ee) (Found: M, 194.0778 . $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $M$, 194.0765); $R_{\mathrm{F}}$ [EtOAc-hexane (4:1)] $0.27 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600(\mathrm{OH}), 3080(=\mathrm{CH}-\mathrm{H})$ and 1650 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.5-7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{PhS}), 5.03(\mathrm{~d}, J 1$, $\mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ ), 4.91 (d, $J 1, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$ ), 4.12 (dd, $J 8.9$ and 3.6, $\mathrm{CHOH}), 3.20\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.3.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{S}\right), 2.97(1 \mathrm{H}, \mathrm{dd}$, $J 13.5$ and $\left.9.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{S}\right), 2.5(1 \mathrm{H}$, br s, OH$)$ and $1.74(3 \mathrm{H}, \mathrm{d}, J$ $1, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 148.5^{-}\left(\mathrm{MeC}=\mathrm{CH}_{2}\right), 130-126$ $(\mathrm{PhS}), 112.3^{-}\left(\mathrm{C}=\mathrm{CH}_{2}\right), 73.8^{+}(\mathrm{CHOH}), 40.7^{-}\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and $21.1^{+}(\mathrm{Me}) ; m / z 194\left(\mathrm{M}^{+}, 28 \%\right.$ ), 124 (100, PhSMe), 123 (74, $\left.\mathrm{PhSCH}_{2}\right), 110(16, \mathrm{PhSH})$ and $109(11, \mathrm{PhS})$.

## Attempted Horner-Wittig elimination of acetamide 91

In the same way, the acetamide $91(58.7 \mathrm{mg}, 0.163 \mathrm{mmol})$, with sodium hydride ( $60 \%$ suspension; $38.1 \mathrm{~g}, 0.95 \mathrm{mmol}, 5.8$ equiv.) in dry THF ( $5 \mathrm{~cm}^{3}$ ) gave, after refluxing for 20 min , a crude product. Purification by PLC, eluting with EtOAc-10\% MeOH , gave methyldiphenylphosphine oxide ( $20.7 \mathrm{mg}, 59 \%$ ).

## References

1 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307; A. D. Buss, N. Greeves, R. Mason and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 2569.
2 E. Vedejs, J. B. Campbell, R. C. Gadwood, J. D. Rodgers, K. L. Spear and Y. Watanabe, J. Org. Chem., 1982, 47, 1534; J. M. Clough and G. Pattenden, Tetrahedron Lett., 1978, 4159; 1979, 5043; D. Caine, B. Stanhope and S. Fiddler, J. Org. Chem., 1988, 53, 4124; D. B. Lythgoe, T. A. Moran, M. E. Nambudiry, J. Tideswell and P. W. Wright, J. Chem. Soc., Perkin Trans. 1, 1978, 590; R. E. Dolle and K. C. Nicolaou, J. Chem. Soc., Chem. Commun., 1985, 1016; S. R. Schow, J. D. Bloom, A. S. Thompson, K. N. Winzenberg and A. B. Smith, J. Am. Chem. Soc., 1986, 108, 2662; S.-J. Shiuey, I. Kulesha, E. G. Baggiolini and M. R. Uskokovic, J. Org. Chem., 1990, 55, 243; J. Mascareñas, P. Pérez-Sestelo, L. Castedo and A. Mouriño, Tetrahedron Lett., 1991, 32, 2813; M. A. Maestro, F. J. Sardina, L. Castedo and A. Mouriño, J. Org. Chem., 1991, 56, 3582.

3 A. D. Buss, J. S. Leake, S. Warren and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, 1983, 2215; P. S. Brown, N. Greeves, A. B. McElroy and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1991, 1485; J. Clayden and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1994, 1529.

4 S. K. Armstrong, E. W. Collington, J. G. Knight, A. Naylor and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1993, 1433; J. Elliott, D. Hall and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1993, 517; D. Levin and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1992, 2155; A. D. Buss and S. Warren, Tetrahedron Lett., 1984, 24, 3931; A. D. Buss, R. Mason and S. Warren, Tetrahedron Lett., 1983, 24, 5293.

5 J. Clayden, E. W. Collington, J. Elliott, S. J. Martin, A. B. McElroy, S. Warren and D. Waterson, J. Chem. Soc., Perkin Trans. 1, 1993, 1849; P. M. Ayrey and S. Warren, Tetrahedron Lett., 1989, 30, 4581; N. J. S. Harmat and S. Warren, Tetrahedron Lett., 1990, 31, 2743.

6 J. Clayden and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1994, 281 1; J. Clayden, E. W. Collington and S. Warren, Tetrahedron Lett., 1992, 33, 7044.
7 J. Clayden, E. W. Collington, E. Egert, A. B. McElroy and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1994, 2801; A. B. McElroy and S. Warren, Tetrahedron Lett., 1985, 26, 2119.
8 Preliminary communications: A. B. McElroy and S. Warren, Tetrahedron Lett., 1985, 26, 5709; J. Clayden, E. W. Collington and S. Warren, Tetrahedron Lett., 1993, 34, 1327; J. Clayden, E. W. Collington, R. B. Lamont and S. Warren, Tetrahedron Lett., 1993, 34, 2203.
9 C. H. Behrens and K. B. Sharpless, J. Org. Chem., 1985, 50, 5696.
10 M. Caron and K. B. Sharpless, J. Org. Chem., 1985, 50, 1557.
11 L. E. Overman and L. A. Flippin, Tetrahedron Lett., 1981, 22, 195.

12 V. S. Martín, J. M. Ode, J. M. Palazón and M. A. Soler, Tetrahedron Asymmetry, 1992, 3, 573; M. E. Jung and J. M. Gardiner, J. Org. Chem., 1991, 56, 2614; K. Maruoka, H. Sano and H. Yamamoto, Chem. Lett., 1985, 599; W. R. Roush, M. A. Adam and S. M. Peseckis, Tetrahedron Lett., 1983, 24, 1377; K. Mori and Y.-B. Seu, Tetrahedron, 1988, 44, 1035; J. M. Chong and S. Wong, J. Org. Chem., 1987, 52, 2596; T. Suzuki, H. Saimoto, H. Tomioka, K. Oshima and H. Nozaki, Tetrahedron Lett., 1982, 23, 3597; K. H. Anh, J. S. Kim, C. S. Jin, D. H. Kang, D. S. Han, Y. S. Shin and D. H. Kim, Synlett, 1992, 306; J. M. Finan and Y. Kishi, Tetrahedron Lett., 1982, 23, 2719; J. M. Chong and K. B. Sharpless, J. Org. Chem., 1985, 50, 1561.
13 A. D. Buss, W. B. Cruse, O. Kennard and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1984, 243.
14 M. Midland and Y. C. Kwon, Tetrahedron Lett., 1985, 26, 5013.
15 F. G. Bordwell and W. T. Branner, J. Am. Chem. Soc., 1964, 86, 4045.

16 M. Chėrest, H. Felkin and N. Prudent, Tetrahedron Lett., 1968, 2199; N. T. Anh, Top. Curr. Chem., 1980, 88, 145.
17 A. S. Cieplak, J. Am. Chem. Soc., 1981, 103, 4540.
18 P. Brownbridge, E. Egert, P. G. Hunt, O. Kennard and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1981, 2751.

19 J. Rokach, Y. Guindon, R. N. Young, J. Adams and J. G. Atkinson in Total Synthesis of Natural Products, ed. J. ap Simon, Wiley, New York, 1988, vol. 7, pp. 141-273.
20 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org. Chem., 1981, 46, 3936.

21 Y. Liwschitz, Y. Rabinsohn and Y. Perera, J. Chem. Soc., 1962, 1116; S. Cardani, A. Bernardi and L. Colombo, Tetrahedron, 1988, 44, 5563; M. Murukami and T. Mukaiyama, Chem. Lett., 1982, 1271; N. Kurokawa and Y. Ohfune, J. Am. Chem. Soc., 1986, 102, 6041 ; J.-P. Genet, C. Pinel, S. Mallart, S. Juge, S. Thorimbert and J. A. Laffitte, Tetrahedron Asymmetry, 1991, 2, 555.

22 C. Walsh, Tetrahedron, 1982, 38, 871; R. Rando, Acc. Chem. Res., 1975, 8, 281.
23 See, for example, J. E. Baldwin, S. B. Haber, C. Hoskins and L. I. Kruse, J. Org. Chem., 1977, 42, 1239; J. E. Baldwin, R. M. Adlington, I. A. O'Neil, C. Schofield, A. C. Spivey and J. B. Sweeney, J. Chem. Soc., Chem. Commun., 1989, 1852; A. J. L. Cooper, S. M. Fitzpatrick, C. Kaufman and P. Dowd, J. Am. Chem. Soc., 1982, 104, 332; J.-M. Girodeau, C. Agouridas, M. Masson, R. Pireau and F. LeGoffic, J. Med. Chem., 1986, 29, 1023.

24 W. H. Pirkle, D. L. Sikkenga and M. S. Parkin, J. Org. Chem., 1977, 42, 384
25 M. P. Sibi and P. A. Renhowe, Tetrahedron Lett., 1990, 31, 7407; U. Schöllkopf, R. M. Nozulak and U. Grott, Tetrahedron, 1984, 40, 1409; R. M. Williams and W. Zhai, Tetrahedron, 1988, 44, 5425; J. E. Baldwin, M. G. Moloney and M. North, Tetrahedron, 1989, 45, 6319; N. A. Sasaki, C. Mashimoto and R. Pauly, Tetrahedron Lett., 1989, 30, 1943; P. L. Beaulieu, J.-L. Duceppe and C. Johnson, J. Org. Chem., 1991, 56, 4196.
26 K. Soai and A. Ookawa, J. Org. Chem., 1986, 51, 4000.
27 C. H. Behrens, S. Y. Ko, K. B. Sharpless and F. J. Walker, J. Org. Chem., 1985, 50, 5687.
28 G. B. Payne, J. Org. Chem., 1962, 27, 3819
29 E. Staude and F. Patat, The Chemistry of the Ether Linkage, ed. S. Patai, ch. 2, p. 21, Wiley, 1967; J. Gorzynski Smith, Synthesis, 1984, 629.
30 H. Baumgartner, C. Marschner, R. Pucher and H. Griengl, Tetrahedron Lett., 1991, 32, 611; K. Biggadike, A. D. Borthwick, A. M. Exall, B. E. Kirk, S. M. Roberts and P. Youds, J. Chem. Soc., Chem. Commun., 1987, 1083; G. V. B. Madhavan, D. P. McGee, R. M. Rydzewski, R. Boehme, J. C. Martin and E. J. Prisbe, J. Med. Chem., 1988, 31, 1798; T. Seita, M. Kinoshita and M. Imoto, Bull. Chem. Soc. Jpn, 1973, 1572.
31 V. Jäger, U. Stahl and W. Hümmer, Synthesis, 1991, 776.
32 S. Matsubara, H. Onishi and K. Utimoto, Tetrahedron Lett., 1990, 31, 6209.
33 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
34 A. Vogel, Textbook of Practical Chemistry, 4th edn., Longman, London, p. 291.
35 R. S. Torr, Ph.D. Thesis, Cambridge, 1979.

Paper 5/00943J
Received 16th February 1995
Accepted 20th April 1995


[^0]:    $\dagger$ We use the terms anti and syn as defined by Masamune (S. Masamune, S. A. Ali, D. L. Snitman and D. S. Garvey, Angew. Chem., Int. Ed. Engl., 1980, 557) starting from the left of the molecule as drawn and ignoring the fixed (trans) relationship across the epoxide.

